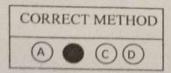
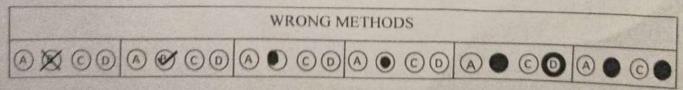
R/o Doubal (Jandle)
noto-959605664 **ENTRANCE EXAMINATION – 2021 – 22** SET-A SSF JAMIA MILLIA ISLAMIA **New Delhi**

Roll No.

MB 03

Signature of Invigilator


Total Marks: 100


Time: 1 Hour 30 Minutes

Paper Code No: M81

Instructions to Candidates

- Do not write your name or put any other mark of identification anywhere in the OMR Response 1. Sheet, IF ANY MARK OF IDENTIFICATIONS IS DISCOVERED ANYWHERE IN OMR RESPONSE SHEET, the OMR sheet will be cancelled, and will not be evaluated.
- 2. This Question Booklet contains the cover page and a total of 100 Multiple Choice Questions of 1 mark each.
- 3. Space for rough work has been provided at the beginning and end. Available space on each page may also be used for rough work.
- There is negative marking in Multiple Choice Questions. For each wrong answer, 0.25 marks will be 4 deducted.
- USE/POSSESSION OF ELECTRONIC GADGETS LIKE MOBILE PHONE, iPhone, iPad, pager 5. ETC. is strictly PROHIBITED.
- Candidate should check the serial order of questions at the beginning of the test. If any question is 6. found missing in the serial order, it should be immediately brought to the notice of the Invigilator. No pages should be torn out from this question booklet.
- Answers must be marked in the OMR Response sheet which is provided separately. OMR Response 7. sheet must be handed over to the invigilator before you leave the seat.
- The OMR Response sheet should not be folded or wrinkled. The folded or wrinkled OMR/Response 8. Sheet will not be evaluated.
- Write your Roll Number in the appropriate space (above) and on the OMR Response Sheet. Any 9. other details, if asked for, should be written only in the space provided.
- There are four options to each question marked A, B, C and D. Select one of the most appropriate 10. options and fill up the corresponding oval/circle in the OMR Response Sheet provided to you. The correct procedure for filling up the OMR Response Sheet is mentioned below.

1	1.	The	study of the relationships	between	living organisms and their physica
	(envi	ronment is called		
	1	A	environmental science	В	Ecology
	(C	Environmental studies	D	None of these
n 2.	. Т	The s	tudy of interrelationships of	different g	groups of organisms is termed as
	A	1	Production ecology	В	Population ecology
	C		Habitat ecology	D	None of these
			SSF JAMIA MII New D		MIA
3.	Т	he '	branch of ecology dealing	with en	ergy conservation and flow in th
	Ol	rgan	isms within the ecosystem is	known as	5
	A		ecological energetic	В	Ecosystem ecology
	C	1	Habitat ecology	D	None of these
4.	The	e eco	ological indicator indicates	the strong	g relationship between a
	A		labitat and ecosystem		
	В		pecies and environmental g	radients	
	C			radicitis	
		ec	quivalent species		
	D	No	one of these		

In troposphere, the temperature decreases with increasing altitude until at the						
A stratosphere	B	Tropopause				
C mid of troposphere	D	None of these				
6. Which layer of the atmosphere ha	s larger ir	nterest in pollution control?				
A Troposphere	В	Mesosphere				
C stratosphere	D	none of these				
	a.					
7 Most of the oxygen present in up	per and t	ransit ion zones of mantle is found in				
the form of						
A Nitrates	В	silieates				
C phosphates	D	none of these				
Which phenomenon occurs within	the fric	tion layer, i.e., over areas of less than				
10 kilometers?						
A mesoscale	В	macroscale				
C microscale	D	none of these -				
SSF JAMIA MILLIA ISLAMIA New Delhi						
Which one is not a primary periodi	c factor i	in the following given options?				
A temperature	В	amount of day light				
C.J atmospheric humidity	D	none of these				

10	w	nich one is not a direct environme	ental f	actor that influences plant growth and
	dist	ribution directly?		
	A	light and temperature	В	soil texture and soil structure
	C	soil water and soil minerals	D	none of these
11	In bi	osphere reserves, in which zone	the hu	iman settlements occur?
	A	core zone	В	buffer zone
	c	transit ion zone	D	none of these
		SSF JAMIA MILL New De	IA ISL	AMIA
12	Whic			eserve in the following options?
	A	conservation of ecosystems		
	В	logistic support		
	e	economic development of eco	syste	ms
	D	none of these		
13	The 2	zone of oceans where maxi mu	m ligh	nt penetration occurs is called
		euphotic zone	В	disphotic zone
	C	aphotic zone	D	none of these

1	4		osynthesis to equal t			oduction of carbon compounds through respiration is	
		A	light absorption po	oint	В	light compensation point	
		С	light saturation poi	int	D	none of these	
15			ctivity rhythm dir			controlled by periodically 1	ecurrent
	A	١.	composite type		В	endogenous type	
	C	_ 0	exogenous type		D	none of these	
16						ow temperature in winter e temperature class of	occurs in
	A	n	negatherms		B	mesotherms	
	C	m	icrotherms		D	none of these	
			SSF	JAMIA MILL New De	IA ISL Ihi	AMIA	
17	The	incr	ease in altitude is	usually ass	sociate	d with climatic changes.	Identify the
	inco	rrect	option.				
	Α	dec	crease in tempera	ture	В	increase in precipitation	
1	C	dec	rease in wind ve	locity	D	none of these	

17

18	The locally adapted populations of	of species adjusted to local environmental
	conditions is termed as	
	A ecads	B ecocline
	Cy ecotypes	D none of these
19	Which one is not a physical limitin	g factor that limits population growth?
	A/ parasitism	
	B climate and weather	
	C absence of water or presence	e of excess water
	D none of these SSF JA	MIA MILLIA ISLAMIA New Delhi
20	A local interbreeding group occur A agamodeme C — endodeme	rring in a particular habitat is called B ecodeme D none of these
21	Abiotic components of ecosyste Which one is not an edaphic fac A soil C rain	em are divided into climatic and edaphic factors etor? B pH D none of these

22	2	The lions and tigers are examples of		
		A 3 rd order consumers	В	4 th order consumers
		2 nd order consumers	D	none of these
23	1	Which one is not an example of auto	trophs	?
	A	grass	В	shrub
	C	moss	D	none of these
24	TI	ne flow of energy through various	trophic	levels of an ecosystem is
	A	cyclic manner	B-	unidirectional
	C	multidirectional	D	none of these
		SSF JAMIA MILLI	A ISLAI	MIA
.5	Wh	ich form of nitrogen is used by th	ne plan	ts for growth and development?
	Ā	nitrite	В	ammonia
	С	nitrate	D	none of these
	Th.			
5	1 ne	cyclic transfer of chemical ele	ments	of the biosphere between organ isms
2	and	environment are called		
1	1	biological cycles	B	biogeochemical cycle
C		chemical transfer cycle	D	none of these
				of most

27	On the basis of components sea bot	ottom is considered to be
21	A complete ecosystem	B. special type of ecosystem
	C incomplete ecosystem	D none of these
28	A small specific part of a large ed	ecosystem with its own specialization such as a
	valley ecosystem is known as	
	A. micro-ecosystem	B macro-ecosystem
	C nano-ecosystem	D none of these
	Maw	MILLIA ISLAMIA
29	The recurrence of life processes s	such as respiration, growth and reproduction etc.
	at regular interval in a year and t	their manifestation in nature is termed as
	A Ecotone	B ecological niche
	6 periodicity	D none of these
30	A phenomenon of increased v	variety and intensity of plants at the common
	junction is called	
	A edge effect	B Ecotone
	C eco-balance	D none of these
	Modern cities and industrial gre	reen belts are examples of
31		IC 11tom
	A terrestrial ecosystem	
	C lentic ecosystem	D none of these
		[9] Entrance Examination – 2021 - 3
		Entrance Examination 2022

M81 SET - A

32	2 In	fresh water ecosystems, an open-	water	zone where effective penetration of
	sol	ar light takes place is called		
	A	littoral zone	В	profundal zone
	8	limnetic zone	D	none of these
33	The	Govindsagar lake at Bhakra-Nang	gal is a	an example of
	A_	- Eutrophic lakes		
	В	artificial lakes		
	С	oligotrophic lakes		
	D	none of these SSF JAMIA	MILLI w Del	A ISLAMIA hi
1	Which		ndant	light and shows high photosynthetic
	A	bathyal zone	В	abyssal zone
	С	suphotic zone	D	none of these
	In fres	sh water ecosystem, which gro	up of	organ isms are flows near the surface
	of wat	er?		
	A	benthos	B	plankton
	C	nekton	D	none of these

36	The	organisms, eurythermal and eury	haline	are found in
	A	pond ecosystem	В	lake ecosystem
	С.	estuary	D	none of these
37	Whic	ch one is an example of tempera	te dese	erts?
	A	Mojave in south California		
	В	Thar in Rajasthan		
	С	Gobi in China	-	
	D	none of these	ew Del	hi SLAMIA
38	In U	nited States and Canada, the te	mperat	te grasslands are known as
	A	Steppes	В	Velds
	С	Prairies	D	none of these
39	In tro	opical rain forests, the top mos	st laye	er of the tallest broad -leaf evergreen trees
	is ter	med as		
	A	emergent layer	В	s. canopy
	C	understory	I	none of these

46	The	tropical deciduous	forests are fou	ind i n			
	A	the areas where o	dry season is lo	onger			
	В	a little away from	n the equator a	and cha	racterized b	by warm clima	te round the
		year					
	С	temperate areas	with adequate	rainfal	1		
	D	none of these	SSF JAMIA	MILLI w Del			
41	The	energy flow in the	ecosystem tal	kes pla	ce		
	A	unidirectional		В	multidire	ctional	
	C	cyclic		D	none of t	hese	
42	The	conversion of sol	ar energy ca	ptured	by the gre	een plants int	o biochemica
	energ	gy and then into th	at of consum	er is go	overned by	the	
	Α .	2 nd law of thermo	odynamics				
	В	1st law of thermo	dynamics				
	С	3 rd law of thermo	odynamics				
	D	none of these					
•							
3	The u	niversal energy fl	ow model th	rough	an ecosyst	tem was expl	ained by
	A	E.P. Odum		В	E.A. Jo	hnson	

D

none of these

Charles S. Elton

The maximum rate at which any population can increase under ideal conditions is called biotic potential and it would be represented by

A S-Curve

B J - Curve

C U - Shaped Curve

D none of these

The relation among net primary production (NPP), gross primary production (GPP) and the respiratory loss (R) is

 $A \cdot NPP = GPP - R$

 $B \qquad NPP = GPP + R$

 $C \qquad NPP = R - GPP$

D none of these

46 The organ isms which can eat both plants and animals are called

A detrivores

B carnivores

C omnivores

D none of these

SSF JAMIA MILLIA ISLAMIA New Delhi

How much energy is transferred from one trophic level to the next trophic level?

A 10%

B 20%

C 30%

D none of these

- Which one is a correct option related to properties of food web
 - A organisms at higher trophic level feed on a single type of organ ism at lower trophic level
 - B organisms at higher trophic level feed on a number of different organisms at lower trophic level
 - C it is a straight pathway through which food energy travels in an ecosystem
 - D none of these

SSF JAMIA MILLIA ISLAMIA New Delhi

- 49 In terrestrial ecosystem, the pyramid of biomass is always
 - A inverted

- B upright
- C inverted or upright
- D none of these
- The pyramid of energy indicates the amount of energy that flows into each trophic level in a given time and it is expressed in
 - A KJ/m²/year

B KJ/m²/month

C KJ/m²/day

- D none of these
- Which one is not an example of gaseous type of biogeochemical cycle?
- A phosphorus cycle

B carbon cycle

C nitrogen cycle

D none of these

52	Which	h step is not involved in the nitrifi	ication	process of nitrogen cycle?
39		format ion of nitrite from ammor		
	Br	conversion of nitrate to molecula		ogen
	C	formation of nitrate from nitrite		
	D	none of these		
53	The r	nitrogen can be fixed industrially	y by F	laber's process, where nitrogen reacts
7		hydrogen at very high temperatu		
	A	protein	В	urea
	С	ammonia	D	none of these
		The state of the s		
54	The	third major reservoir of carbon i	s the c	ocean which stores carbon more than
	Α.	20 times as much as the atmos		
	В	30 times as much as the atmos	sphere	
	С	50 times as much as the atmos	sphere	
	D	none of these SSF JAMI	A MILL	LIA ISLAMIA
			Vew De	
55	In the	e biosphere, the major portion	on of	water is available in the oceans which
55				
	conta	ain approximately	В	67% of the total
	A	97% of the total	В	
	С	73% of the total	D	none of these
			[15]	Finsting 2021 - 2

56 Which one is considered as a secon	56 Which one is considered as a secondary air pollutant?						
A SO ₂	В	O ₃					
C NO ₂	D	none of these					
Smokes are fine particles of liquids	or solid	s having their size ranging from					
A 1 to 10 μm	В	0.5 to 1 μm					
C 0.1 to 5 μm/	D	none of these					
589 Nitrogen dioxide plays a major role	e in the p	production of					
A Secondary air pollutants	В	primary air pollutants					
C nitric oxide	D	none of these					
SSF JAMIA	MILLIA ew Delh						
The polynuclear atomic hydrocarbo	on is con	nsidered as air pollutant because of					
A irritating property	В	highly corrosive in nature					
C potentially carcinogenic	D	none of these					
The deterioration of monuments and sculptures are caused by							
A the exposure of sulphuric acid aerosols							
B the exposure of the byproduct	ts of ca	lcium sulfate					
C / exposure of dry sulphur dioxide							

D

none of these

59

60

61	Nitri	e oxide is		1 adarately toxic				
	A	highly toxic	В	Inert and moderately toxic				
	С	low toxic	D	none of these				
-	The	ozone is an extremely active co	mpour	apound and readily oxidizes				
620	The	platinum and rubbers	В	elastomers and textile fibers				
	A		D	none of these				
	C fabrics, dy	fabrics, dyes and gold	SF]AI	MIA MILLIA ISLAMIA				
				New Delhi				
63 Carbon monoxide reacts with the hemoglobin of blood to give carboxy								
hemoglobin which A increase the oxygen carrying capacity of the blood								
	22 the central pervous system							
	C		would not affect the central nervous system					
	D	D would not affect the centum						
60	Th	The atmospheric concentration of carbon dioxide in pre-industrial revolution era						

A 320 ppm

B 200 ppm

D none of these

- Among the following, which greenhouse gas has maximum global warming potential?
 - A. CH₄

B N₂O

C CO₂

- D none of these
- The rain is termed as acid rain when the pH of rain water equals to or less than
 - A 7.00

В 6.00

C , 5.60

- D none of these
- The stratospheric ozone is measured in Dobson Unit (DU) and DU is equal to
 - A 0.01 mm

B 0.10mm

C 1.00 mm

D none of these

SSF JAMIA MILLIA ISLAMIA New Delhi

- Which category of UV radiations reaching the earth surface due to depletion of ozone layer?
 - Az. UV-A

B UV-8

C. UV-C

- D none of these
- 69 The ambient air quality standard of PM 2.5(24 hourly average) for industrial, residential, rural and other areas is
 - A ... 60 μg/m³

B $40 \, \mu g/m^3$

C 80 µg/, m³

D none of these

700	The ambient air quality standard o	f CO	(1 hourly average) for industrial,
	residential, rural and other areas is A 4 mg/m ³ C 2 mg/m ³	B D	3 mg/m ³ none of these ain water with maximum amount of
		B D A MIL lew De	none of these
720	The colour of naturally available ze A white C / yellow		
730	The unit of electrical conductivity A millisiemens per liter C milligram/liter	(EC) (B	milliequivalents per liter
74	Which one is not considered to be A Bacteria, viruses, protozoa C Plant nutrients		nic pollutant causing water pollution? B Human and animal waste D None of these
M81	SET - A	[19]	Entrance Examination - 2021 - 2
M81	SET-A		

7	5	The concentration of dissolved oxygen in river that shows good water qua						
O.		A 7 mg/l	В	10 mg/l				
	(C _ 12 mg/l	D	none of these				
Eutrophication of water bodies is caused by the								
	Α	discharge of toxic substances						
	В	excessive discharge of nutrier	nts					
	C	excessive discharge of suspen	ided so	lids				
	D	none of these						
	SSF JAMIA MILLIA ISLAMIA New Delhi							
0	Har	d ness of water is caused by the	presend	ce of the following i n water				
	A	chlorides and sulphates	В.	calcium and magnesium				
	С	nitrites and nitrates	D	none of these				
M PN index is a measure of one of the following:								
	A	coliform organisms	В	protozoa only				
(C	viruses only	D	none of these				

- 79. The taste and odour producing dissolved gases are
 - A . H₂S, CH₄, CO₂, N₂
 - B H₂S, CH₄, CO₂, O₂
 - C _ H2S, CH4, CO, H1
 - D none of these
- The water borne bacterial disease, cholera causes vomiting and diarrhea is transmitted by
 - A Salmonella typhosa
- B. Vi brio comma

C Shigella

- D Giardia lamblia
- The disease caused by prolong oral ingestion of cadmium is known as
 - A Itai Itai

B Blue baby disease

C Minimata

D Cancer

SSF JAMIA MILLIA ISLAMIA New Delhi

- Methemoglobinemia, the 'Blue Baby' syndrome is caused by consuming excessive amount of
 - A fluoride

B phosphate

C nitrate

D nitrite

83 The presence of fluoride in water gre	ater th	an permissible level of 1.5mg/I causes				
A cardiovascular disease	В	mottling of teeth and fluorosis				
C methemoglobinemia	D	none of these				
84 As per IS: 10500 (1991), in drinking	water,	the desirable limit of total hardness is				
A . 300 mg/l	В	400_mg/l				
C 500 mg/l	D	none of these				
85 As per IS: 10500 (1991) the desira	ble lin	nit of the nitrate nitrogen in drinking				
water should be						
A 30 mg/l	В	45 mg/l				
C- 1mg/l	D	none of these				
SSF JAMIA MI New		SLAMIA				
Which one is not a source of fats, oil	and gr	rease in wastewater?				
A kitchens of restaurants	В.	garages				
Claundry	D	none of these				
The pH of fresh sewage (municipal waste water) is						
A. more than 7.	В	less than 7				
C exactly 7	D	none of these				

	Which one is not considered to be a point source of wastewater discharge:						
88	Whic			urban streets			
	Α.	factory outlets	D	none of these			
	0	underground mines					
88	The	amount of oxygen consumed	during	microbial utilization of organics is			
	called	d		1. C. innov			
	A	oxygen requirement	В	oxygen deficiency			
	e	biochemical oxygen demand	D	oxygen demand			
		saturation conc. for oxygen in	water a	t 20 °C is			
901	The		В	9.0 mg/l			
	A	8.5 mg/l	Б				
	C	8.9 mg/l	DX	8.95 mg/l			
91	Whi	ch of the following is biodegra	adable?				
1		organic pesticides	В	tannic and lignic acids			
	A		D	none of these			
	e	protein	-				
SSF JAMIA MILLIA ISLAMIA New Delhi							
924	The	quantification of non-biodegr	adable	organics can be quantified by			
	A	subtraction of BOD5 from 0	COD				
	B addition of BOD and COD						
C subtraction of BODu from COD							
	D	none of these					

938	The value of reaction rate 'k' for any organics is dependent on temperature; hence							
	the value of 'k' increases with							
	A decreasing temperature	В	maintaining temperature					
	C increasing temperature	D	none of these					
94%	The rate at which organics are utili	zed by	microorganisms is assumed to be of					
	A second order reaction	В	first order reaction					
	C third order reaction	D	none of these					
Which one of the following is a major source of the atmospheric CO_2 ? A plants respiration								
В	B human respiration							
С								
D	none of these		LIA ISLAMIA elhi					
Wh	ich one of the following is not con	nsidere	d as macronutrients					
A	potassium	В	manganese					
С,	magnesium	D	none of these					

The rat	e of decomposition	on is expressed a	as a	"persistency value" Normally the time	, i.e., DT50 is considered	
. 4		B D				
A	accumulation of a	nimal manures		lution?		
Ç. D	improper sanitati	SSF JAMIA Ne	MILL w De	Ihi	node of disposal)	
A.	< 50 mg/l	I	3	100 mg/l		
				rge standard (for al	l mode of disposal)	
with respect to Biochemical Oxygen Demand (BOD) is						
A	10 mg/l		В			
ç	30 mg/l	125	D		amination – 2021 - 22	
	(disapp in A C Which A B C with A C	in A days C minutes Which one is not agricult A accumulation of and B excessive input of c improper sanitation D none of these In case of STP, the tree with respect to total sur A <50 mg/l C 150 mg/l In case of STP, the tree with respect to Bioche A 10 mg/l	in A days C minutes Which one is not agricultural source of so A accumulation of animal manures B excessive input of chemical fertiliz C improper sanitation D none of these SSF JAMIA Ne In case of STP, the treated effluent disc with respect to total suspended sol ids (' A <50 mg/l C 150 mg/l In case of STP, the treated effluent disc with respect to Biochemical Oxygen I A 10 mg/l C 30 mg/l C 30 mg/l	in A days C minutes Which one is not agricultural source of soil pole A accumulation of animal manures B excessive input of chemical fertilizers C. improper sanitation D none of these SSF JAMIA MILL New De In case of STP, the treated effluent discharg with respect to total suspended sol ids (TSS) A <50 mg/l B C 150 mg/l D In case of STP, the treated effluent discharg with respect to Biochemical Oxygen Demail A 10 mg/l B	A days C minutes D none of these Which one is not agricultural source of soil pollution? A accumulation of animal manures B excessive input of chemical fertilizers C improper sanitation D none of these SSF JAMIA MILLIA ISLAMIA New Delhi In case of STP, the treated effluent discharge standard (for all respect to total suspended sol ids (TSS) is A < 50 mg/l C 150 mg/l D none of these In case of STP, the treated effluent discharge standard (for all respect to Biochemical Oxygen Demand (BOD) is A 10 mg/l B 20 mg/l D none of these	