M. Tech. in Agricultural Engineering Set No. 1 Soil & water Comservation Question Booklet No. 00373

16P/289/22

(To be filled up by the candidate	e by blue/black ball-point pen)
Roll No.	
Roll No. (Write the digits in words)	de No (355)
Serial No. of OMR Answer Sheet	
Day and Date	(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided as the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigitator, otherwise it will be taken as unfairmeans.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this
- 12. Deposit only OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hair.

 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण पृष्ठ पर दिये गए हैं।] Total No. of Printed Pages: 32

ROUGH WORK एफ कार्य

No. of Questions: 120

Time: 2 Hours Full Marks: 360

Note: (1) Attempt as many questions as you can. Each question carries 3

(Three) marks. One mark will be deducted for each incorrect

answer. Zero mark will be awarded for each unattempted question.

- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- **01.** When a canal is carried over a natural drain, at crossing, the structure provided is called:
 - (1) Siphon

(2) Aquduct

(3) Super passage

(4) Level crossing

- 02. A cross regulator is provided on a main canal:
 - To minimize the amount of silt entering the branch canal.
 - (2) To let maximum silt is carried into the branch canal.
 - (3) For no specific purpose.
 - (4) To carry the canal across the drain.
- 03. A plot between rainfall intensity versus time is called:

(1) Hydrograph

(2) Mass curve

(3) Hyetograph

(4) Isohyet

04.	Isob	sobaths maps indicate:						
	(1)	Area affected by high water to	Area affected by high water table problems					
	(2)	Flow of water						
	(3)	Extent of salinity						
	(4)	Amount of ground water						
05.			noist	ure for plant growth essentially				
	com	es from:		NV 5350 5				
	(1)	Gravity water	(2)	Capillary water				
	(3)	Hygroscopic water	(4)	Free water				
06.	Gen	eral assumption made to st	tudy	the mechanics of sediment				
	tran	sport is:						
	(1)	Soil is incoherent (C=0)	(2)	Soil is coherent				
	(3)	C > 1	(4)	C = 1				
07.	Hyd	rologic soil group A stands for	:					
	(1)	Low runoff potential						
	(2)	Moderately high runoff poter	ntial					
	(3)	Moderately low runoff potent	tial	6				
	(4)	High runoff potential						
	5 860		577					

P.T.O.

	se	ction of an o	pen ch	annel is :				
	(1)	Semi circu	ılar		(2)]	Parabolic	
	(3)	Trapezoida	al		(4)]	Rectangular	
09	. Th	e Thiessen p	olygon	is:				
	(1)	a polygon	obtain	ed by joini	ng ad	ljoi	ning raingauge	stations
	(2)	a represer	itative	area used	for v	wei	ighing the obs	erved station
		precipitation						
	(3)	an area us	ed in t	he constru	ction	of	depth-area cur	ves
	(4)	the descrip	tive te	rm for the	shap	e o	f the hydrograp	bh
10.	The	volume of v	vater tl	hat can be	extra	icte	ed by force of g	ravity from a
	uni	t volume of a	ıquifer	material is	calle	ed :		
	(1)	Specific ret	ention		(2)	S	pecific yield	
	(3)	Specific gra	vity		(4)	S	pecific capacity	
11.	If th	e discharge o	of drain	nage canal	is 100	00	liter/sec and dr	
	is 36	60 hectares,	the dra	ainage coef	ficien	it v	vill he ·	ainage area
	(1)			0.24 cm	(3)		Law	4.2 cm
							55° X	··· Cill
				5				

08. From the hydraulic efficiency point of view, the most efficient cross-

12.	Leakage factor has the dimensions of:					
	(1)	Time	(2)	Length		
	(3)	Velocity	(4)	Resistance		
13.	A pi	ractical method of reducing sh	eet e	rosion from sloping lands is :		
	(1)	Keeping the land fallow				
	(2)	Farming on contour strips		*		
	(3)	Construction of small reservo	irs			
	(4)	Using plastic sheet cover				
14.	A cr	itical condition of flow:				
	(1)	Specific energy is minimum				
	(2)	Viscous force is minimum				
	(3)	Specific energy is maximum				
	(4)	Total force is maximum				
			~	the second the second s		
15.		ne diameter of a pipe is halved,				
	incr	rease in the head loss due to fr	ictio	n:		
	(1)	Two times	(2)	Ten times		
	(3)	Four times	(4)	Sixteen times		

16	. Ну	Hydraulic conductivity is the proportionality constant in:					
	(1)	Bernauli's equation	(2)	Darcy's equation			
	(3)	Rational formula	(4)	Laplace's equation			
17	. Fr	oude number is the ratio of the	:				
	(I)	Inertial force to the shear for	ce				
	(2)	Inertial force to the viscous fo	orce				
	(3)	Inertial force to the gravitatio	nal f	orce			
	(4)	Viscous force to the gravitation	nal f	orce			
18.		w in an irrigation channel is co	nside	ered as :			
	(1)	Gradually varied	(2)	Rapidly varid			
	(3)	Spatially varied	(4)	uniform			
19.	The	velocity head in the case of flu	id flo	w is the :			
	(1)	Kinetic energy per unit area					
	(2)	2) Kinetic energy per unit flow area					
	(3)	Kinetic energy per unit weight	t				
	(4)	Kinetic energy per unit time					

20.	If th	ne electrical c	ondu	ctivity of ir	rigati	on and draina	age v	vater is 0.2	
						respectively,			
	requirement will be equal to :								
	(1)	80 %	(2)	40 %	(3)	50 %	(4)	20 %	
21.	10 c	m of irrigation	n is a _l	oplied to a	field.	l cm goes as r	unof	f loss and 2	
	cm g	goes as perco	lation	loss. The a	applic	ation efficienc	y is :		
	(1)	90 %	(2)	60 %	(3)	80 %	(4)	70%	
22.	A 80) % dependat	ole rai	nfall mean	s:				
	(1)	Magintude o	f rain	fall equal to	o 80 °	% of normal			
	(2)	(2) Chances of normal rainfall are 80 %							
	(3) Rainfall will be equal to or more than the given value 80 % of the								
		time							
	(4)	Rainfall will	be les	ss then the	give	value 80 % of	the t	ime	
23.	The	cumulative in	nfiltra	tion equati	on is	$I = 2 t^{0.5}$ (I in ca	m, t i	n minutes).	
	The instantaneous infiltration rate at 4 minutes from start will be:								
	(1)	0.1 -m/min			(2)	0.5 cm/min			
		1.0 cm/mir	1		(4)	1.5 cm/min			

24	. Th	e normal cut fi	ll rat	io in a land	d leve	eling operation is	s kej	pt about :
	(1)	0.7	(2)	1.0	(3)	1.3	(4)	2.0
25.	. Wa	ater horse powe	er of a	a centrifuga	al pu	mp of 10 liter/se	ec ca	apacity and
	38	meter total he	ad wi	ll be equal	to:			
	(1)	3	(2)	5	(3)	4	(4)	6
26.	Irri	gation water h	aving	; an SAR va	alue o	of 20 is called as	:	
	(1)	very high soo	dium	water	(2)	high sodium v	vate	r
	(3)	medium sodi	um v	vater	(4)	low sodium wa	ater	
27.	Ver	nturi used for o	loing	fertigation	in m	nicro irrigation s	yste	m working
		the following t						
	(1)	Kennedy's			(2)	Khosla's		
	(3)	Bernoulli			(4)	Jones		
28.	The	discharge rate	s of c	drip emitte	rs us	ually ranges fro	m·	
		2-10 liters/da				2-10 liters/h	•	
	(3)	2-10 liters/m	in		(4)	2-10 liters/sec		

29.	The	safe entr	ance vel	ocity throug	gh a w	rell screen is	:		
	(1)	0.3 mm/	s (2)	3 mm/s	(3)	30 mm/s	(4)	300 mm	n/s
30.	The	movemen	t of soil	particles ha	ving s	izes in the ra	nge of	0.05 to (0.5
	mm	through	a series	of benches	is kno	own as			
	(1)	Surface	creep		(2)	Surface tran	nsport	ation	
	(3)	Saltation	1		(4)	Suspension			
31.	The	numerica	l value of	hydraulic e	xpone	ent for critical	flow c	omputati	on
	in a	rectangu	lar chan	nel is :					
	(1)	3	(2)	Zero	(3)	1	(4)	2	
32.	An '	S' curve i	n hydrol	ogy is obtai	ned b	y summing :			
	(1)	Rainfall			(2)	runoff			
	(3)	Snowme	lts		(4)	evaporation			
33.	A d	rop spillw	ay is use	ed of:					
	(1)	Erosion	control		(2)	Flow measu	ıreme	nt	
	(3)	Flow div	ersion		(4)	Flow regula	tion		

34	. Cu	rve number represents:		
	(1)	Rainfall property	(2)	Watershed feature
	(3)	Runoff trend	(4)	Stream flow feature
25	۸			
33				ious layer and below by a layer
	tha	at is either impervious or partia	ally p	ervious is called :
	(1)	Confine aquifer	(2)	Semi confined aquifer
	(3)	Unconfined aquifer	(4)	Perched aquifcr
36	Co	On orman data	200	
30	. Ca	sagrande's apparatus is used t	o det	ermine:
	(1)	Liquid limit	(2)	Shrinkage limit
	(3)	Plastic limit	(4)	Plasticity index
27	Dece			
37,	rui	mps are selected based on:		*
	(1)	Pump diameter	(2)	Pump characteristic curve
	(3)	Pump design curve	(4)	Well curve
38.	Cro	p factor is the ratio between:		
	(1)	Pan evaporation and PET		<i>t.</i>
	(2)	Reference crop evapotra	nspi	ration and actual
		evapotranspiration		detual crop
	(3)	PET and reference crop evapo	trans	piration
	(4)	Actual crop evapotranspiration	n and	crop water requirement
				amement

39.	Can	nopy factor is the ratio between:					
	(1)	Canopy area and land area					
	(2)	Canopy area and row spacing	g				
	(3)	Plant height and plant area					
	(4)	Canopy temperature and am	bien	t temperature			
40.	Prec	rise land leveling can be done	usin	ga:			
	(1)	Wooden float	(2)	Scraper blade			
	(3)	Singh patella	(4)	Laser land leveler			
41.	A fo	ot valve is used in a centrifuga	al pui	mping system so as to:			
	(1)	Keep it primed					
	(2)	Measure the flow					
	(3)	Give strength to its foot					
	(4)	Control flow of water in to th	e pu	mping system			
42.	Mul	ching is used for:		g.			
	(1)	Ensuring good germination					
	(2)	Conserving moisture					
	(3)	Preventing soil from compac					
	(4)	Increasing irrigation water a	applio	cation efficiency			

. Bio	Bioremediation is a technique of:								
(1)	Removing microorganism from food items								
(2)	Improving water quality using biological methods								
(3)	Meditation in agricultural fie	lds							
(4)	Removing weeds using biolog	gica	l means						
4. Ground water contamination from non point source pollution is cause by :									
(1)	Leaching of nutrients and pesticides								
(2)	Ground water exploitation	Ground water exploitation							
(3)	Aquifer rock weathering								
(4)	Climate change								
SRI	I is a technique of :								
(1)	Honouring plant verities								
(2)	Crop cultivation in strict regu	lato	ry instructions						
(3)									
(4)	Growing rice		1						
Gyp	sum can be used to reclaim :								
(1)	Alkali soils	(2)	Acidic soil						
(3)	Sodic saline soil	4)	None						
	(1) (2) (3) (4) . Gr by (1) (2) (3) (4) . SR! (1) (2) (3) (4) . Gr (1) (2) (3) (4) . SR! (1) (2) (3) (4)	(1) Removing microorganism fro (2) Improving water quality usin (3) Meditation in agricultural field (4) Removing weeds using biolog (4) Removing weeds using biolog (5) Ground water contamination from the by: (1) Leaching of nutrients and period (2) Ground water exploitation (3) Aquifer rock weathering (4) Climate change SRI is a technique of: (1) Honouring plant verities (2) Crop cultivation in strict regulation (3) Screening for resistance to mediate to mediate the second of the secon	(2) Improving water quality using bit (3) Meditation in agricultural fields (4) Removing weeds using biological. Ground water contamination from non by: (1) Leaching of nutrients and pestic (2) Ground water exploitation (3) Aquifer rock weathering (4) Climate change SRI is a technique of: (1) Honouring plant verities (2) Crop cultivation in strict regulato (3) Screening for resistance to moisting (4) Growing rice Gypsum can be used to reclaim: (1) Alkali soils (2)						

47. The conjunctive use of water in a basin means:

	(1)	Combined use of the water for	irrigation and hydro power				
		generation					
	(2)	Use of water by co-operative farm	ers				
	(3)	Use of water for irrigating both R	abi and Khariff crops				
	(4)	Combined use of surface and gro	und water resources				
48.	In R	Rational formula, Q = CiA, i standa	ards for :				
	(1)	Intensity of rainfall					
	(2)	Hydraulic gradient	4				
	(3)	Runoff coefficient					
	(4)	Mean intensity of rainfall for a duration equal to time of					
		concentration (tc)					
49.	Whe	en two centrifugal pumps are oper	ated in series, the discharge				
	(1)	increases (2)	decreases				
	(3)	Remains constant (4)	None of the above				
50.	Pre	essure plate apparatus is used for th	ne measurement of soil moisture				
	ten	nsion up to :	70.1 (4) F1 bors				
	(1)	10 bars (2) 15 bars (3)	50 bars (4) 51 bars				
		14	iii				

51	. Pa	article densit	y and bu	lk densit	y of a s	oil are 2.8	g/cm³ an	id 1.4g/cm ³	
		 Particle density and bulk density of a soil are 2.8 g/cm³ and 1.4g/cm³, its void ratio will be 							
	(1)	1.0	(2)	0.5	(3)	4.2	(4)	2.4	
52	. Ну	draulic drop	takes p	lace whe	n the	flow chan	ges:		
	(1)	(1) From sub critical to critical							
E0)	(2)	From criti	cal to su	per critic	cal	8			
	(3)	From sup	er critica	l to sub (critical				
	(4)								
53.	Su	rge irrigation	ı refers	to:					
	(1)	Supplying total water quickly and in one go							
	(2)	Supplying water in several wetting and drying cycles							
	(3)								
	(4)	Supplying							
54.	Cip	olettie weir s	side slop	es of:					
		1:4		: 1			(4)	2:1	
55.	Max	imum energ	y use in	irrigated	crop c	ultivation	ie in .		
	(1)	Tillage.				Irrigation	15 111 :		
	(3)	Harvesting		14	24 953	Sowing/pl	antin~		
							- Talk		
				15		·			
								PTO	

56.	The fluid that do not undergo strain rates proportional to the applied						
	she	ar stress are called:					
	(1)	Newtonian fluids	(2)	Non Newtonian fluids			
	(3)	Compressible fluids	(4)	Non compressible fluids			
57.	If V	is the velocity and I is the hyd	rauli	c gradient then in the relation			
	V =	Kl, K has the dimensions of:		à			
	(1)	LT-1	(2)	T-1			
	(3)	L^2T^2	(4)	Dimensionless			
58.		abandi, Shejpali and Osraband	li are	the systems of rotational canal			
	(1)	Need based irrigation					
	(2)	Better uniformity in water ap	plica	ation			
	(3)	Better equity in water distrib	oution	n.			
	(4)	Better recovery of water char	ges				
59.	eva	potranspiration) is: Penman's Equation	esti (2)	mation of PET (potential Blaneycriddle formula			
	(3)	olegs A pan evaporation	(4)	Penman Monteith Equation			

60. Practical methods of reducing sheet erosion from sloping lands is :

- (1) Keeping the land fallow
- (2) Farming on contour strips
- (3) Construction of small reservoirs
- (4) Using plastic sheet covers

61. Mathematical equation used to describe saturated-unsaturated flow of water in drip irrigation:

- (1) Richard equation
- (2) Continuity equation
- (3) Bernoulli's theorem
- (4) Laplace equation

62. Which one of the following defines aridity index (Al)-

(1)
$$AI = \frac{PET - AET}{PET} \times 100$$

(2)
$$AI = \frac{PET}{AET} \times 100$$

(3)
$$AI = \frac{AET}{PET} \times 100$$

(3)
$$AI = \frac{AET}{PET} \times 100$$
 (4) $AI = \frac{AET - PET}{AET} \times 100$

63. For vertical cut, the width of bench terrace is:

(1)
$$W = (D.S)/100$$

(2)
$$W = (100S)/D$$

(3)
$$W = 100/S$$

(4)
$$W = S/100$$

- 4	If an orchard of 180 guava plants requires 50 liters per day per plant.								
64,	li an	orchard of 1	80 gu	iava plants i	requi	res 50 liters pe	er da	y per plant.	
	Wha	at minimum c	apaci	ty pump is r	neede	d for a drip sys	stem	headworks	
	for (daily operatio	n not	exceeding	30 m	in.			
	(1)	3 lps	(2)	5 lps	(3)	6 lps	(4)	9 lps	
65.	Hydrologic cycle is driven by :								
	(1)	Winds			(2)	Sun			
	(3)	Rotation of 6	earth		(4)	Water level in	oce	an	
66.	Hydroponics is:								
	(1)	Growing pla	nts in	water solu	tion				
	(2)	Growing pla	nts w	ithout water	r	·			
	(3)	Carrying pla	nts o	n pony's ba	ck				
	(4)	Water carry	ing po	onies					
67.						s in several v	wells	, excavated	
	thro	ugh a confin	ed aq	uifer, is kno	w as	the:			
	(1)	cone of dep	ressio	on	(2)	piezometric s	surfa	ce	
	(3)	Perched wa	ter ta	ble	(4)	hypsometric	curv	re	
						197			

68	. Ar	ea under a hydrograph represe	nts :	
	(1)	Volume of runoff	(2)	Volumes of rainfall
	(3)	Area of watershed	(4)	Average rate of runoff
69	. Er	odibility of a soil depends upon	:	
	(1)	Soil moisture		
	(2)	Mechanical composition of so	oil	
	(3)	Soil structure		*
	(4)	Hydraulic conductivity		
70.	The uni	e volume of water that can be e	extra	cted by force of gravity from a
	(1)	Specific retention	(2)	Specific yield
	(3)	Specific gravity	(4)	Specific capacity
7 1.	Ero	sivity refers to the potential abi	lity c	of:
	(1)	Soil to get erode		8
	(2)	Rain drops and blowing wind	to er	ode the particles
	(3)	Wind to erode particles		Cics
	(4)	Rain to erode particles		
				e e

72.	Effe	ctive rainfall in irrigation plann	ing i	s equal to:
	(1)	Total rainfall		
	(2)	Rainfall – runoff		
	(3)	Rain water stored in root zone		
	(4)	Rainfall + runoff		
73.		unit hydrograph may be obtai		
	(1)	Direct runoff volume		
	(2)	Storm duration		
	(3)	Duration of unit hydrograph		
	(4)	Total runoff-volume		
74.	Rain	n drops are spherical in shape l	beca	ruse of:
	(1)	Surface tension	(2)	Capillary
	(3)	Acceleration due to gravity	(4)	Cohesion and adhesion
75	. Gro	ound water recharge by surface	floo	ding is primarily governed by :
	(1)	Infiltration rate		
	(2)	Aquifer transmissibility		
	(3)	Aquifer storage coefficient		
	(4)	Saturated hydraulic conduct	ivity	¥

76	6. R	aiı	n gun is a term used to desc	ribe :	N .
	(1	.)	Gun usable in rains	(2	Dropping of guns like rain
	(3	3)	Gun that fires like rain	(4)	Huge sprinkler head
77	7. IV	V/	CPE ratio is used for :		
	(1)	Scheduling irrigations	(2)	Scheduling fertigation
	(3)	Scheduling chemigation	(4)	Scheduling tillage operations
78	3. Ve	ert	ical entry into the soil throu	gh so	il surface may be defined as:
	(1))	seepage rate	(2)	percolation rate
	(3)		infiltration rate	(4)	evaporation rate
79	. Ly	sir	neter is device used to meas	ure t	he:
	(1)		Infiltration capacity of soil	(2)	Evapotranspiration
	(3)]	Evaporation	(4)	Transpiration
80.	Wh	icł	n type of soil has maximum	volun	ne of pore spaces.
	(1)		Clay	(2)	Sand
	(3)	L	oam	(4)	Silt

81.	Ann	Annual maximum floods are most likely to fit in:						
	(1)	Normal distribution	(2)	Gamma distribution				
	(3)	Gumbel distribution	(4)	Beta distribution				
82.	Cycl	onic precipitation is due to :		0				
	(1)	orographic lifting						
	(2)	ocean nearby						
	(3)	convergence of storms towords a low pressure belt						
	(4)	divergence of storms		ž1				
83.	Soil	structure refers to :						
	(1)	Arrangement of soil particles	(2)	Size of soil particles				
	(3)	Colour of soil particles	(4)	Shape of soil particles				
84.	Mat	ric potential is the result of ph	enon	nena of:				
	(1)	Adhesion	(2)	capillary				
	(3)	Both (1) and (2) above	(4)	None of the above				

85.	Readily available soil moisture to plants in the soil profile (root zone)							
	is a	approximately equal to :		*				
	(1)	1) 100 percent of available water holding capacity						
	(2)	2) 75 percent of available water holding capacity						
	(3)	50 percent of available water	holo	ding capacity				
	(4)	(4) 25 percent of available water holding capacity						
86.	An	instrument used for meas	uren	nent of saturated hydraulic				
	con	ductivity of soils is:						
	(1)	Permeameter	(2)	Hydrometer				
	(3)	Conductivity meter	(4)	Manometer				
87.	Con	nbined use of surface and grou	ınd v	vater in an irrigation project is				
	(1)	Integrated use	(2)	Consumptive use				
	(3)	Conjunctive use		Bottom up use				
88.	PMF	KSY stands for :						
	(1)	Prime Minister Kisan Sewa Yo	nina					
	(2)	Prime Minister Kisan Sahyog	Voin					
	(3)	Prime Minister Krishi Sinchai	Yoir	a 18				
	(4)	Prime Minister Kisan Savings	Yojn	a				

89.	Con	fined aquifer i	s also	known as	:				
	(1)	Water table a	quife	7	(2)	Artesian aqui	fer		
	(3)	Semi-confine	d aqu	iifer	(4)	Perched aqui	fer		
an	The	oiman la			مبداء	an anal mavim	imoti	an nuahla.	
50.	in:	simplex proce	dure 1	s used to s	oive ;	general maxim	izatio	on proble	III
	(1)	Dynamic pro	gramı	ning	(2)	Linear progra	ımmi	ing	
	(3)	Integer progr			(4)				
				_					
91.	Slop	length affects	s the e	erosion ma	inly	by:			
	(1)	Increasing flo	w velo	ocity for sh	ortei	duration			
	(2)	Decreasing fl	ow vel	locity for s	horte	r duration			
	(3)	Increasing flo	w velo	ocity for lo	nger	duration			
	(4)	None of the a	bove			E1			
92	Δ ar	eater soil eros	ion is	observed i	n cas	se of :			
<i>34</i> .									
	(1)	Soil surface of				ius			
	(2)	Soil surface 1	ınder	grass cove	r				
	(3)	Soil under for							
	(4)	Soil under cu	ıltivat	ed seasona	al cro	p			
93.	zon app	eld measuring e when 6 cum olication efficie 70 %	nec of ncy?	ectares, 40 water was 75 %	s app	of water was st lied for 8 hour 69.44 %		in the ro hat will I	be

- **94.** Sink term (Sz) in this equation $\left(\frac{\partial \theta}{\partial t} = \frac{\partial v_z}{\partial_z} S_z\right)$ represents:
 - (1) Amount of solutes present in the soil for root water uptake
 - (2) Water movement in the soil
 - (3) Water lost through drainage and deep percolation
 - (4) Water extraction by plant roots
- 95. In a rectangular channel section, the critical depth (hc) is given by :

(1)
$$h_c = \sqrt{\frac{Q^2}{gb^2}}$$

(2)
$$h_c = 3\sqrt{\frac{Q^2}{b^2}}$$

(3)
$$h_{\rm e} = 3\sqrt{\frac{Q^2}{gb^2}}$$

$$(4) \quad h_e = 3\sqrt{\frac{Q^2}{gb}}$$

- 96. In Rational formula, Q = CiA, i standards for:
 - (1) Intensity of rainfall
 - (2) Hydraulic gradient
 - (3) Runoff coefficient
 - (4) Mean intensity of rainfall for a duration equal to time of concentration (tc)
- 97. Time-domain reflectometry (TDR) is the method of monitoring:
 - (1) Soil moisture

- (2) Vapour pressure
- (3) Salt concentration
- (4) Solar radiation

98.	The	capillary fringe also called:		
	(1)	suspended water	(2)	vadose water
	(3)	Gravity water	(4)	All of the above
99.	Rem	oval of a thin and fairly unifo	orm l	ayer of the soil from the land
	surf	ace by runoff water is called:		
	(1)	Torrent erosion	(2)	Sheet erosion
	(3)	Glacial erosion	(4)	Geologic erosion
100	.Тор	bench terraces are suitable fo	r are	as receiving:
	(1)	medium uniformly distribute	d rai	nfall with medium permeable
		deep soils		
	(2)	Heavy rainfall with permeable	e dee	p soils
	(3)	Low rainfall with permeable of	deep	soil
	(4)	Very high rainfall with perme	able	shallow soils
101	. Infil	tration rate in a sandy soil is :		
	(1)	More than that of clay soil		8
	(2)	less than that of clay soil		
	(3)	equal to clay soil		
	(4)	equal to zero		

102	102. Pump stand is a:									
	(1)	concrete base of a pump								
	(2)	water entry p	water entry point of underground pipeline							
	(3)	platform for s	platform for standing before a pump							
	(4)	non-functiona	ıl p	ump						
103.	Vel	ocity area metho	od	is used t	to estima	ite:				
	(1)	velocity of flow	,		(2)	area of flow				
	(3)	discharge of fl	ow		(4)	None of the a	lbove	<u>.</u>		
104.	Sca	le of pH varies f	ron	n						
	(1)	0-1 (2	2)	0-14	(3)	0-10	(4)	0-7		
105.7	Гhе	green house eff	ect	is cause	ed by an	excess of ·				
	(1)	Carbon dioxide								
					(2)	Carbon mono	xide			
((3)	Carbon tetrach	ılor	ride	(4)	None of the a	bove			
106.1	Diap	ohragm pumps a	are	used to	lift :					
(1)	Muddy water fr	om	shallow	depths					
(2	2)	Muddy water fr				Į.				

(3) Clear water from tube wells

(4) Oil from deep wells

107. In	107. Infrared thermometer gun is used for:									
(1)	Scaring away animals								
(2	2)	Measuring soil temperature								
(3)	•)	Measuring canopy temperature								
(4)	Measuring fraction of infrared light								
108.Va	108. Variable rate applicators are important tools used in :									
(1)	Relay cropping	(2)	Precision farming						
(3	3)	Mixed farming	(4)	Creating variability in the field						
109.W	/ha	t for the cocopeat, perlite and	vern	niculite mixtures are used:						
(1	[]	A substitute for soil								
(2	2)	As fertilizers								
(3	3)	As plant protection chemical	S							
(4	4)	As organic manure								
110. V	With	n each cycle of surge irrigation	ı, inf	iltration rate of soil :						
(1)	Remains constant	(2)	Increases						
((3)	Decreases	(4)	has no relation						

111. A Gypsum	block	is	used	as	a	:
---------------	-------	----	------	----	---	---

- (1) Soil amendment
- (2) soil moisture measurement device
- (3) a device to stop flow
- (4) a device to compact the soils

112. The velocity head in the case of fluid flow is the:

- (1) Kinetic energy per unit volume
- (2) Kinetic energy per unit weight
- (3) Kinetic energy per unit flow area
- (4) Kinetic energy per unit drop in water surface

113. The normal cut fill ratio in a land leveling operation is kept about :

- (1) 0.7
- (2) 1.0
- (3) 1.3
- (4) 2.0

114. Hydraulic ram is a device:

- (1) To measure hydrostatic pressure
- (2) Used to counter water hammer
- (3) Lift water from deep tube wells
- (4) Lift part of huge water available at low heads to higher heads

115. A shade factor of 35 % indicates:

- (1) Cutting light up to its 35 %
- (2) Cutting light intensity by 35 %
- (3) Providing shade in 35 % area
- (4) Providing shade to leave only 35 % area open

116. The	term sand-witch lining is used	d to 1	represent:				
(1)	Lining of sand - witches						
(2)	Line of sand- witches						
(3)	Lining of canals with several materials one above the other						
(4)	Lining of canal patches with different lining materials						
117. The hydraulic food-routing methods are:							
(1)	Equation of continuity						
(2)	Equation of motion only						
(3)	Both momentum and continuity equation						
(4)	Energy equations only						
118. The most commonly used method for land grading calculations is: (1) Four point method (2) Summation method							
(1)	Four point method	(2)					
(3)	Method of least squares	(4)	Leveling index				
119. Bouncing of soil particles along soil surface is termed as:							
(1)	Siltation	(2)	Saltation				
,	Surface creep	(4)	Particle jumping				
120. The contour interval between head end and tail end of a 50 m long field is 0.5 m. What is the average slope of the field: (1) 0.5 % (2) 1.0 % (3) 1.5 % (4) 2.0 %							

ROUGH WORK एक कार्य

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली-काली बाल-प्वाइंट पेन से ही लिखें)

- ग्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त,* लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़े और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा।
 केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ॰ एग॰ आर॰ पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्नपुस्तिका पर अनुक्रमांक और ओ॰ एम॰ आर॰ पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमित नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- ४. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने
 पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो संबंधित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ एम आर उत्तर-पत्र परीक्षा भवन में जमा कर दें।
 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 13. परीक्षा समाप्त हान स पर्वा परीक्षा निर्धारित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित
- 14. यदि कोई अभ्यथी पराक्षा म अनुष्या तायना का नवान परितार के का तर राज्य विकास के व