13c. Physics Code No. (48)

6164

Set No: 1	Question Booklet No
(To be fill	ed up by the candidate by blue/black ball-point pen)
Roll No.	
Roll No. (Write the digits in words)	9.4. 69.
Serial No. of OMR Answer Si	heet
Day and Date	(Signature of Invigilator)
INCT	DICTIONS TO CLATTER

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR sheet No. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. 'For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of continuous: the University may determine and impose of impose of impose. - liable to such punishment as

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए हैं]

Total No. of Printed Pages : 27

ROUGH WORK एक कार्य

Mac. Physics CodeNo, (481) 17P/218/22 (1)

No. of Questions: 120

Tim	e:2 Hours]	10	0014	[Full Marks: 360
Not	marks.	one B B ancomo	deducted for ea	estion carries 3 (Three) ch incorrect answer. d question.
		than one alternativenswer, choose the		be approximate to the
1.		gas is mixed with		me gas, the entropy of
	(1) 2 kN ln2	(2) kN ln2	(3) Zero	(4) In2
		zmann constant.		e s e
2.		ed in going reversi Itiplied with an integ		ates can be made inte-
	(1) $\frac{1}{V}$	(2) T	(3) $\frac{1}{T}$	(4) S
3.	of initial volum	expansion of 10 gr e. The change in er d for I gm-mole ga	ntropy of nitrogen i	fune becomes 4 times if molecular weight of 8.3 I/mole- K, is
	(1) 4.1 joule/K	(2) 41 joule/K	(3) 4.1 erg/k.	4.1 cal/K
ï		(1)	(Turn Over)

4.	The function which remains constant if the thermodynamic process is carried out isobarically and isothermally is called					
	(1) Internal energ	gy	(2)	Gibbs' function		
	(3) Helmholtz fu	nction	(4)	Enthalpy		
5.	Which of the follo	owing gives vol	ume,	V ?	100	
	$(1) \left(\frac{\partial G}{\partial P}\right)_{\Gamma}$		(2)	$\left(\frac{\partial U}{\partial V}\right)_{\rm N}$		
	(3) $-\left(\frac{\partial G}{\partial T}\right)_{P}$	13	(4)	$\left(\frac{\partial U}{\partial S}\right)_{I}$		
	where the symbol	s have their usu	al me	eanings.		
6.	Fermi level repre-	sents the energy	leve	el with probability of i	its occupation of	
	(1) 0%	(2) 25%		(3) 50%	(4) 100%	
7.	The steady state of	onditions in dif	fusio	on are governed by	•	
	(1) Fick's second	law	(2)	Fick's first law		
	(3) Both (1) and	(2)	(4)	Maxwell-Bohzmann	i's law	
8.	 The electronic polarizability, α of a monoatomic gas atom, if r is the radio of orbit of electron, is 					
	(1) $4\Pi \varepsilon_0$	(2) $4\Pi \varepsilon_0 r$	23	(3) $4\Pi \varepsilon_0 r^3$	(4) $4\Pi \varepsilon_0 r^2$	
	15 21.55	Pet	(2)	(Continued)	

9.	With increase i	in temperature.	the	orientational po	olarization in general
	(1) Decreases		(2)	Increases	
	(3) Remains sar	ne	(4)	None of these	
10.	The probability of	of occupation of a	an en	ergy level E, who	en E - EF = KT , is given
	(1) 0.73	(2) 0.63		(3) 0.5	(4) 0.27
Í1.	The frequency as	ssociated with 20	mm '	wavelength micro	owaves is
	(1) 100 MHz	(2) 400 MHz		(3) 73 MHz	(4) _. 15 GHz
12.	Total current den	sity, \overline{J}_i equals			· · · · · ·
	(1) Sum of curr current dens		to i	ree charge carr	iers and displacement
	(2) Current dens	sity due to free ch	arge	carriers only	
	(3) Displacement	nt current density	only	• 6	*
23.	(4) None of thes	se			T 0-1-1,
13.	The capacitance	of two concentri	c me	tal shells, with ra	dii a and b is
	$(1) \ \frac{Q}{4\Pi \varepsilon_0} \left(\frac{1}{a} - \frac{1}{b} \right)$	5)	(2)	$4\Pi\varepsilon_0\frac{ab}{(b-a)}$	
	(3) $\frac{1}{4\Pi\varepsilon_0} \cdot \frac{ab}{(b-a)}$		<i>(</i> 4)	$4\Pi \epsilon_{0} Q \left(\frac{1}{a} \frac{1}{b} \right)$	
	$411\varepsilon_0$ $(b-a)$	•)	(4)	(a b)	***
			(3)		
	29			3.5	(Turn Over)

14.	For glass-air inter- tion coefficient is	· · · · · · · · · · · · · · · · · · ·	and n	a = 1) for nor	mal inc	idence, tl	ne reflec-
	(1) 0.2	(2) 0.04		(3) 0.98		(4) 0.9	6
15.	The total energy space is	density assoc	iated	with an elect	romagn	etic wav	e in free
10	$(1) \frac{1}{2} \varepsilon_0 E_{\cos}^2$		(2)	$\varepsilon_0 E_{\rm rms}^2$			
	(3) $2\varepsilon_0 E_{\rm rms}^2$		(4)	None of thes	e		
3	where E_{ros} is the netic wave.	rms value of	electri	c field associ	ated wit	th the ele	ectromag-
16.	Electric flux assets is given by	ociated with a	small	surface area	ds in a	n electric	c field $ar{E}$
	(1) $\vec{E} \cdot d\vec{s}$		(2)	$\epsilon_0 \overline{E} \cdot d\vec{s}$	98		
	(3) $\oint_{S} \vec{E} \cdot d\vec{s}$	88 1	(4)	$\vec{E} \times d\vec{s}$	经		
17.	If a Gaussian sur point inside it	face encloses 1	no cha	irge, which of	the foll	lowing is	true for a
	(1) Electric field	must be zero					
	(2) Electric pote	ential is zero					
	(3) Electric field	and potential	are ze	ro			
	(4) None of the	se					
			(4)			(Continued)

10	The second			1000
18.	Energy	is not	transferred	by

- (1) Transverse progressive wave
- (2) Longitudinal progressive wave
- (3) Stationary wave
- (4) Electromagnetic wave
- 19. The relation between permeability and susceptibility in C.G.S. system is

(1)
$$\mu = \mu_0(1+\chi)$$

(2)
$$\mu = 1 + 4\Pi \chi$$

(3)
$$\mu = \frac{\mu_0}{4\Pi}(1+\chi)$$
 (4) $\mu = 1+\chi$

(4)
$$\mu = 1 + \chi$$

20. Lorentz unit is

(1)
$$\frac{eB}{4\Pi mc}$$

(2)
$$\frac{eB}{4\Pi m}$$

(3)
$$\frac{eB}{4\Pi hmc}$$

$$(4) \frac{eB}{4\Pi h}$$

21. The unit of magnetic moment is

(1) erg-gauss

(2) erg-1 gauss-1

(3) m-gauss

(4) Bohr magneton

(Turn Over)

22. Very low temperatures can be produced by							
	(1) Adiabatic demagnetisation o	f a paramagnetic salt					
	(2) Adiabatic magnetisation of a paramagnetic salt						
	(3) Isothermal magnetisation of	diamagnetic salt					
	(4) Isothermal demagnetisation	(4) Isothermal demagnetisation of diamagnetic salt					
23.	The SI unit of \overrightarrow{B} is						
	(1) Tesla	(2) Gauss					
	(3) Tesia mt Amp²	(4) Amp-mt ²					
24. A solenoid having a resistance of 5 Ω and self inductance of 4 Henry, connected to a battery of emf 10 volt and negligible resistance. After he long, current will become I A in it?							
	(1) 1.1 sec	(2) 10.55 sec					
	(3) 2 sec	(4) 2.2 sec	1/4				
25.	An L-C-R circuit will oscillate	if	52				
	(1) R>LC	$(2) R < \sqrt[3]{\frac{L}{C}}$					
	$(3) R > \sqrt[3]{\frac{L}{C}}$	$(4) R = \frac{L}{C}$	100 A				
		(6)	(Continued				
		<i>y</i>	700				

26.	 The lag angle between the current and applied emf in a series LR circuit is given by 					
	(1) $\tan^{-1}\frac{1}{WLR}$ (2) $\tan^{-1}\frac{WL}{R}$					
	(3) $tan^{-1} WLR$ (4) $tan^{-1}(R)$					
27.	The quality factor of a series L-C-R circuit is given by					
	(1) $\frac{1}{WLR}$ (2) WCR (3) $\frac{WL}{R}$ (4) WLR					
28.	For a good conductor, the spin depth varies as					
	(1) Inversely as angular frequency ω					
	(2) Directly as ω					
**	(3) Inversely as $\sqrt{\omega}$					
	(4) Directly as $\sqrt{\omega}$					
29.	The dielectric constant, ε of water is 80. This does not justify its refractive index $n = 1.33$, violating the expression $n^2 = \varepsilon$. This is because,					
	(1) The water molecule has no permanent dipole moment					
	(2) The boiling point of water is 100 ℃					
	(3) The two quantities are measured at different frequencies					
	(4) Water is transparent to visible light					
	(7)					
	(Turn Over)					
	Out C					

30.	Propagation of electromagnetic waves in a medium with frequency depen- dence phase velocity is called					
	(1) Reflection	(2) Refraction	(3) Polarization	(4) Dispersion		
31.	varying electric fi	vity and ε , permiti- eld E of angular fre the conduction curr	vity of a medium wi quency, ω , then the ra- rent density will be	th sinusoidal time tio of displacement		
	(1) $\frac{\sigma}{E\varepsilon}$	(2) $\frac{\omega}{\sigma}$	(3) $\frac{\sigma}{\omega \varepsilon}$	$(4) \ \frac{E\varepsilon}{\omega}$		
32.	For sinusoidally	varying electric fit a differ in phase by	eld, the conduction c	urrent and the dis-		
	(1) 180 degree	(2) Zero degree	(3) 90 degree	(4) 45 degree		
33.	A bubbled (input	inverted) OR gate is	s equivalent to			
		(2) NAND gate	(3) NOT gate	(4) XNOR gate		
34.	. The most suitable	e gate for comparin	g two bits is			
	(I) AND	(2) OR	(3) NAND	(4) X-OR		
35	. Which of the fo	llowing gates canno	t be used as an inverte	г?		
55	(I) NAND	(2) AND	(3) NOR	(4) X-NOR		
1	6 How many NO	R gates are required	to obtain AND operat	ion?		
31	(1) 2	(2) 3	(3) 4	(4) 1		
(8)						

37.	The velocity of	an electron in	first orbit of H atom	is (approximately)	
	(1) C		(2) $2.2 \times 10^6 \mathrm{r}$	n/sec	
	(3) $5 \times 10^7 \text{ m/s}$	sec	(4) $22 \times 10^7 \mathrm{m}$	/sec	
38.	For overlap into	raction between	en nearest neighbou	s of the type,	
	$\phi(r) = B \exp\left(\frac{-r}{\rho}\right)$	B and ρ are	re constants, the equ	illibrium spacing in terms o	f
	B and ρ is	<i>y</i>			
	(1) $\rho \log e B$	(2) $\frac{\rho}{B}$	(3) B/ρ	(4) ρ B	
39.				m is accelerated through welength associated with the	
	$(1) \ \frac{h}{\sqrt{2meV}}$		$(2) \frac{h}{\sqrt{2m\phi V}}$	and the same of th	
	$(3) \frac{h}{\sqrt{2qV}}$	¥	$(4) \ \frac{1}{\sqrt{2mV}}$	· ar was,	
40.	Number of atom	ns in a unit cell	in BCC lattice is		
	8 (1)	(2) 1	(3) 2	(4) 4	
4 I.	Atomic packing	factor for FC	Clattice is approxim	ately .	
	(1) 34%	(2) 52%	(3) 68%	(4) 74%	
		 ■ NPESSEX 	(9) -	(Turn Over)	

42.	2. Nearest neighbour distance in a simple cubic lattice with lattice parameter a is					
	(1) $a\sqrt{\frac{3}{2}}$	(2) a	(3)) √2 a	(4) √3 a	
43. For a simple cubic lattice, the ratio of density of points in (111) a planes is					ints in (111) and (110)	
	(1) $\frac{2}{3}$	(2) $\frac{\sqrt{2}}{\sqrt{3}}$	(3) 9/4	(4) $\frac{2}{5}$	
44.	If Fermi energy average electron	of electrons in a energy at same t	netal a temperat	t some tempe ure will be giv	erature T is 5.5 eV. The ven by	
	(1) 33 eV	(2) 5.5 eV	(3) 3.3 eV	(4) Zero eV	
45.	Which of the f op-amp?	ollowing chara	cteristic	s does not no	ecessarily apply to an	
	(1) High gain		(2) Lo	ow power		
	(3) High input is	mpedance	(4) Lo	ow output imp	edance	
46.	Common mode	gain in a differe	ntial amj	olifier is		
	(1) Very high		(2) V	ery low	20	
	(3) Always unit	у	(4) Is	nfinite	85	
47.	47. A certain noninverting amplifier has an R_i of 1 k Ω and an R_j of 100 k Ω . The closed loop gain is					
	(1) 106	$(2) 10^3$	((3) 101	(4) 100	
	9559		(10)	*6	(Continued	n
			*			

- 48. A phase-shift oscillator has
 - (1) Three RC circuits
- (2) Three LC circuits
- (3) a T-type circuit
- (4) a Π-type circuit
- 49. The figure given below shows the density of electron states versus energy for a free electron gas in

- (1) Three-dimensions
- (2) One-dimension
- (3) Two-dimensions
- (4) None of these
- 50. Specific impedance of free space is
 - (1) 377 Q
- (2) 500 Ω
- (3) 50Ω
- (4) 100Ω

- 51. Zero-point is related to
 - (1) Quantization (2) Lasers
- (3) Uncertainty . (4) Duality

52. Stern-Gerlach experiment demonstrated

	(1) Uncertainty principle						
	(2) Quantization of angular momentum						
	(3) Duality						
	(4) None of thes	e					
53.	The distance bett	ween (100) plane	s in a simple cubic crys	tal with unit cell side			
	(1) <i>a</i>	$(2) \ \frac{a}{\sqrt{2}}$	$(3) \ \frac{a}{\sqrt{3}}$	(4) $\frac{a}{2}$			
54.	The term value,	T of a state is					
	(1) $\frac{E}{hc}$	$(2) = \frac{E}{hc}$	$(3) \ \frac{E}{211hc}$	$(4) - \frac{E}{2\Pi hc}$			
55.	The spectral terr is 84178.5 cm '.	n value correspo The ionisation p	nding to the ionisation otential of Hg-atom is	potential of Hg-atom			
	(1) 15 V	(2) 10.4 V	(3) 13.6 V	(4) 1 V			
56	56. Which of the following, best describes the relation between orbital angular momentum and corresponding magnetic moment of electron in an atom?						
	$(1) \vec{p}_c = \frac{-2m}{c} \vec{p}$	i,	$(2) \ \overline{P}_c = \frac{2m}{e} \ \overline{\mu}_c$				
	$(3) \ \overline{P}_c = \frac{2m}{\hbar} \ \overline{\mu}$		$(4) \cdot \dot{p}_c = \dot{\mu}_c$				
			(12)	(Continued)			
	8 1						

57.	If a well collimate magnetic field i			owed to pass thro iment, we get	ugh non-	homogeneou	
	(1) One trace		(2)	Double trace			
	(3) No trace		(4)	None of these			
58.	For So state		*00				
	(1) J = 1	(2) $J = 0$		(3) J = 3/2	(4)	J = 5/2	
59.	The magnitude	of \vec{L} , for a d-cl	lectron,	in one-electron a	ntomic sy	stem is	
	(1) 2	(2) √5 ħ		(3) $\sqrt{3} h$	(4)	√7 ħ	
60.	In alkali spectral series, when one goes towards higher value of n ,						
	(1) Doublet sep	aration increas	es	til.	2		
	(2) Doublet sep		ies	***	P-34 (
	(3) Separations		ne	2/.			
	(4) (1) and (3)	. ريميني والاولاد		11 c.z.	*		
61.	The transition	$^{2}P \rightarrow 3^{-2}S$, $^{\prime}$	n = 3, 4,	5, in alkali ato	m gives		
	(1) Sharp series	er er nadare er h e ng 1.	(2)	Principal series	1000		
	(3) Diffuse seri	es	(4)	r uncamental seri	ica.		
			(13)	×		(T	
	6		-			(Turn Over)	

62.	In the following lines of a dou	ıblet :						
	$^{2}S_{1/2} \leftarrow$	$^{2}P_{1/2}, ^{2}S_{1/2} \leftarrow ^{2}P_{3/2}$	24					
	(1) 1st line is stronger							
	(2) 2nd line is stronger							
	(3) Both lines have the same intensity							
	(4) Intensity of 2nd line is ha	lf that of 1st						
63.	For the level ³ D ₃ , the Lange's	s splitting factor g is	*					
	(1) 7/3 (2) 5/3	(3) 4/3	'(4) Zero					
64.	In normal Zeeman effect, sel	lection rule $\Delta M_L = 0$ give	s					
	(1) II components	(2) σ components	34					
	(3) unpolarized components	(4) γ- components						
65.	If one state is occupied (or other particles, the particles	allowed) for one micropa are	article and is denied for					
	(1) Bosons (2) Ferm	ions (3) Phonons	(4) Photons					
66	. The main component responsive fier in low frequency range	nsible for the fall of gain is	of an RC coupled ampli-					
	(1) The active device itself	(2) Coupling capa	citance					
	(3) Load resistance	(4) Junction capa	citance					
	(3) 5035	(14)	(Continued)					
			19					

- 67. Compared to a CB amplifier, the CE amplifier has
 - (1) Lower input resistance
 - (2) Higher output resistance
 - (3) Lower current amplification
 - (4) Higher current amplification
- 68. r"r is solenoidal for

- (1) n=3 (2) n=-3 (3) n=2 (4) n=-2
- 69. If $I = \int_{0}^{\infty} e^{-au^{2}} du$, then
 - (1) $I = \sqrt{\Pi/a}$
- (2) $I = \frac{1}{2} \sqrt{\Pi/a}$ (4) $I = \sqrt{\frac{\Pi}{2a}}$
- (3) $I = \frac{3}{9} \sqrt{\frac{\Pi}{3}}$

- 70. The coefficient of t^n in the expansion of the function $e^{\frac{t}{2}(t-1)}$ is called
 - (1) The Legendre function
 - (2) The Bessel function of first kind of order n
 - (3) Laugurre function
 - (4) Hermite polynomial of order n

71. $H_{n-1}(x) + H_{n+1}(x)$ equals (where terms have their usual meanings)

(1) $\frac{2n}{x} H_n(x)$ (2) $2n H_n(x)$

(3) $2H'_{n}(x)$

(4) $H_{n+2}(x)$

72. Transpose conjugate of two matrices A and B i.e., (AB)' equals

(1) A*B*

(2) B^+A^+

(3) B'A'

(4) AB

73. The product of a singular matrix with its adjoint gives

(1) a unitary matrix

(2) a null matrix

(3) a diagonal matrix

(4) None of these

74. The generalised momenta is defined by

(1) $p_i = \frac{\partial L}{\partial q_i}$

 $(2) \quad p_i = \frac{\partial H}{\partial q_i}$

(3) $p_i = \frac{\partial L}{\partial \dot{q}_i}$

 $(4) \quad P_1 = \frac{\partial H}{\partial \dot{q}_1}$

75. If $\delta(x)$ is delta function then

 $(1) x \delta(x) = x$

 $(2) x \delta x = \delta x$

 $(3) \times \delta(x) = 0$

 $(4) \delta(x) = \infty$

(16)

(Continued)

76	5. 1 m Curie is equal to	碧
	(1) 3.7 × 10 ⁷ disintegrations/sec	
	(2) 3.7 × 10 ¹⁰ disintegrations/sec	
8.	(3) 106 disintegrations/sec	
	(4) 10 ³ disintegrations/sec	©
77.	. Nuclei with even mass numbers have	©
	(1) Zero or integral spin (2) Half integral spin	
	(3) Imaginary spin (4) None of these	
78.	In Mosley's law, $\sqrt{\nu} = a(z-b)$, the screening constant b for i	K series is
	(1) 1 (2) 7.4) 2.7
79.	For crystals, having two atoms per primitive cell, square of ang	ular frequency
	of lattice vibration is given by $\omega^2 = \frac{C/2}{M_1 + M_2} K^2 a^2$ correspond	40
	(1) Optical branch	
	(2) Acoustical branch	
	(3) To both acoustical and optical branches	*
	(4) Band gap	
	(17)	(Turn Over)

39

80. The wave vector associated with free electrons at Fermi surface has magnitudes

$$(1) \left(\frac{2mE_E}{\hbar^2}\right)^{1/2}$$

$$(2) \ \frac{2mE_p}{h^2}$$

$$(3) \left(\frac{2m}{\hbar^2}\right)^{\frac{1}{2}}$$

$$(4) \left(\frac{2mE_F}{\hbar^2}\right)^{3/2}$$

 The total forward electric current, including the effects of both holes and electrons, in a p-n junction is given by

$$(1) \quad I = I_0 \left(e^{\frac{eV}{KT}} - 1 \right)$$

$$(2) \quad I = I_0 \left(e^{\frac{-eV}{KT}} - 1 \right)$$

$$(3) I = I_0$$

$$(4) \quad I = I_{ij} e^{\frac{e T}{KT}}$$

where the terms have their usual meaning.

82. Compton wavelength $\frac{h}{m_0 e}$ equals

(4)
$$2.4 \times 10^{-11}$$
 m

- 83. According to free electron theory of metals, potential experienced by electrons inside the metal is
 - (1) A constant large potential
 - (2) A variable potential
 - (3) Zero potential
 - (4) Periodic potential

(18) (Continued)

84.	Energy equivale	nt to rest mass o	fele	ctron is		42
	(1) 1.02 MeV	(2) 0.51 MeV		(3) 1.53.Me	V	(4) 0.51 keV
85.	A particle is mo mass with its res	ving with 90% o	f the	velocity of lig	ht. Rati	o of its relativistic
	(1) 2.29	(2) 3.00		(3) 5.00		(4) 2.00
86.	In a solenoid, ma	agnetic field is m	axim	num at	2	di di
	(I) Its centre	*:	(2)	Ends		
	(3) Away from i	t	(4)	None of these		
87.	Two interfering of maximum to min	coherent waves h imum littensity t	475	amplitudes in t	he ratio	2:1. The ratio of
	(1) 9:1	(2) 3:1	10	(3) 12:;1		<u>(4)</u> 4:1
88.	In Fresnel's bipri	sm, coherent sou	ırces	are formed du	e to	9
	(1) Division of a	mplitude	(2)	Multiple refle	ction	
	(3) Division of w	vavefront	(4)	Reflection		8 .
89.	In colour photogra	aphy	(() 4 (0)		1
	(1) Progressive w	ave-formation is	usec	d		
	(2) The formation	of stationary wa	ves i		2 (25% t	
	(3) Diffraction is		•	-1-		
	(4) Reflection is u	sed		8		
	••	(19)	100		(Turn Over)
		7	-			(Turn (how)

- 90. In case of Newton's ring, central ring will be dark in
 - (1) Reflected system of light
 - (2) Transmitted system
 - (3) In reflected as well as transmitted system
 - (4) In case plano-convex lens is silvered
- 91. Diffraction of light can be exhibited by light with an obstacle having dimension of the order of
 - (1) 100 cm
- (2) 10 cm
- (3) 10⁻⁵ cm
- (4) 10 m
- 92. At polarising angles, reflected and refracted rays are
 - (1) Parallel

(2) Antiparallel

(3) at 90°

- (4) at 45°
- 93. The Thevenin equivalent voltage for the network shown is

- (1) 24 V
- (2) 12 V
- (3) 16 V
- (4) 8 V

(20)

(Continued)

94.	A certain JFET ideal voltage gai	has a $g_m = 4$ ms. n is	With an ac drain	resistance of 1.5 k Ω , the
	$(1) 6 \times 10^3$	(2) 2.6	(3) 6	(4) 2.6×10^3
95.·	The wavelength difference 100 \	associated with	an electron accele	rated through a potential
	(1) 1.2 Å	(2) 12.2 Å	(3) 12 nm	(4) 1.22 pm
96.	The typical de B	roglie wavelength	of an electron in a	metal at TK is
	$(1) \lambda = \frac{1}{\sqrt{3mKT}}$	200 Pa	$(2) \lambda = \frac{h}{\sqrt{3mKT}}$	
	$(3) \lambda = \frac{h/2}{\sqrt{3mKT}}$	•	$(4) \lambda = \frac{b}{\sqrt{2mKT}}$	e e
7.	Slow neutrons ar	e incident on a sa n	mple of Uranium c	ontaining both "U and
	(1) Both isotopes	will undergo fissi	ion and breakup	
,	(2) only $\frac{26}{4}$ U atom	ms undergo fissio	n	
((3) only ³³⁸ U ator	ns undergo fissio	1 ,	
(4) None of the is	otopes will break	up	* *
				· · · · ·
	ā		4)	(Turn Over)
			-	

98.	The half life of ²¹⁸ P ₀ is 3 minute. What fraction of a 10 gm sample of ²¹ will remain after 15 minutes?				
	(1) $\frac{1}{5}$	(2) $\frac{1}{25}$	(3) $\frac{1}{32}$	(4) $\frac{1}{64}$	

- 99. Hard magnetic material is characterized by
 - (1) High coercive force and low residual magnetic induction
 - (2) Low coercive force and high residual magnetic induction
 - (3) Only low coercive force
 - (4) High coercive force and high residual magnetic induction
 - 100. The density of carriers in a pure semiconductor is proportional to

(1)
$$\exp\left(\frac{-Eg}{KT}\right)$$
 (2) $\exp\left(\frac{-2Eg}{KT}\right)$

(3)
$$\exp\left(\frac{-Eg}{KT^2}\right)$$
 (4) $\exp\left(\frac{-Eg}{2KT}\right)$

- 101. Imperfection arising due to the displacement of an ion from a regular site to an interstitial site maintaining overall electrical neutrality of ionic crystal is called
 - (1) Frenkel imperfection (2) Schottky imperfection
 - (3) Point imperfection (4) Volume defect (Continued)

102. Miller indices of	the diagonal _l	plane o	f a cube are	at a		
(1) (200)	(2) (111)	# H	(3) (010)		(4) (110)	
103. If the load resista ripple voltage	nce of a capa	citor fi	iltered full w	ave rectif	ier is reduce	ed, the
(1) Increases		(2)	Decreases			
(3) Is not affected	d E	(4)	has a differe	ent freque	ncy	
104. If one of the diode	es in a bridge	full wa	ve rectifier o	pens, the	output is	85
(I) 0V	•		to me yes		and the second s	
(2) One-fourth the	amplitude of	fthe in	out voltage		24	
(3) a half-wave rec	tified voltage	j 1.0,+ , .	संबंध १०००सम्बद्धाः -	FF to antenna dist	 -	
(4) a 100 Hz volta	ge			*		
105. When operated in	cutoff and sat	uration	, the transisi	or acts lik	é	
(I) a linear amplif	ier · ·	(2)	a switch			
(3) a variable capa	citor	(4) a	a variable res	sistor		
106. The low frequency	response of a				art by	
(1) the voltage gair			he type of tr	12010011	·	
(3) the supply volta	ge	(4) tl	ne coupling o	capacitors		
8	ä	(22)				
		700 00	500 1.0		(Turn O	lar)

- 107. If the rate of change of current in a current carrying coil is unity, then the induced emf is equal to (1) Coefficient of self induction
 - (2) Magnetic flux linked with the coil
 - (3) Number of turns in the coil
 - (4) Thickness of the coil
- 108. The velocity of the ejected photoelectrons depends upon the
 - (1) Frequency of incident light
 - (2) Intensity of incident light
 - (3) Both (1) and (2)
 - (4) Neither (1) nor (2)
- 109. If the electron in a hydrogen atom jumps from an orbit with level $n_i = 3$ to an orbit with level $n_f = 2$, the emitted radiation has a wavelength given by

$$(1) \quad \lambda = \frac{36}{5R}$$

$$(2) \quad \lambda = \frac{5R}{36}$$

(3)
$$\lambda = \frac{6}{R}$$

$$(4) \lambda = \frac{R}{6}$$

where R is Rydberg constant.

- 110. Consider α -particles, β -particles and γ -rays, each having an energy of 0.5 MeV. In the increasing order of penetrating powers, the radiations are
 - (1) α , β , γ (2) α , γ , β
- (3) β, γ, α (4) γ, β, α

111. The wavelength of γ-rays is of the order of					
(1) 10 ⁻⁷ metre	,	(2) 10	-10 metre	¥0	
(3) 10^{-12} metre		(4) 10	-³ metre		
112. $[L^2, L_r]$ equals	- A				
(1) ih L_x	(2) iħ L,	(3)	Zero	(4) A L,	
113. An electron falls de Broglie wavele	went associated A	viin eiec	tron will be near	ly.	
(1) 12.3 nm	(2) 1.23 nm	(3)	123 nm	(4) 0.123 nm	
114. An electromagnet	ic wave going thre	nich va	Million is donnil.	,,,,	
$E = E_0 \sin(kr - art)$	and D D walk	ough vat	court is described	тоу	
$E = E_0 \sin(kx - \omega t)$	and $D = D_0 \sin(Rx)$	$-\omega r$), t	nen		
$(1) E_0 K = B_0 \omega$. (2) E ₀ B ₀	, = ωK		
$(3) E_0 \omega = B_0 K$			0/K		
115. The energy densit well of infinitely h	y of states of an igh walls is (the s	electro ymbols i	n in a one-dime have their usual r	ensional potential	
	12		- *** . * *. ±		
$(1) \frac{L\sqrt{m}}{\Pi \hbar \sqrt{2E}}$	(2	$\frac{L_{I}}{\Pi h}$	m √E		
$(3) \frac{Lm}{\Pi h \sqrt{2E}}$		$\frac{L\sqrt{2\Pi I}}{2\Pi I}$	m. DE	560	
	(2	5)	i	(Turn Over)	

	The commutator $[x, px]$, where x	and px	are position and momentum opera-
	tor respectively, is		88

- (1) 2ihpx
- $(2) -i\hbar px$
- (3) 2*i*ħxpx
- (4) -2ihxpx

117. Value of
$$[f(x), px^2]$$
 is

(1) ih

(2) $i\hbar \frac{\partial f}{\partial x}$

(3) ih $\frac{\partial f}{\partial px}$

(4) n iħ

118. The equation of states of a dilute gas at very high temperature is described by $\frac{pV}{K_BT} = 1 + \frac{B(T)}{V}$, where V is the volume per particle and B(T) is a – ve quantity. One can conclude that this is a property of

- (1) a van der Waals' gas
- (2) an ideal Fermi gas
- (3) an ideal Bose gas
- (4) an ideal inert gas

119. Which of the following relations between the particle number density n and temperature T must hold good for a gas consisting of non-interacting particles to be described by quantum statistics?

 $(1) \ \frac{n}{T^{1/2}} \ll 1$

 $(2) \ \frac{n}{T^{3/2}} \ll 1$

(3) $\frac{n}{T^{3/2}} \gg 1$

(4) $\frac{n}{T^{3/2}}$ and $\frac{n}{T^{3/2}}$ can have any values

(26)

(Continued)

120. If the kinetic energy of a body is twice its rest mass energy, what will be the ratio of relativistic mass to the rest mass of the body

(1) 3

(2) 1

(3) $\frac{1}{2}$

(4) 2

(27)

ROUGH WORK एक कार्य

ROUGH WORK रफ़ कार्य

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्याइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें ।
- परीक्षा भवन में लिफाफा रहित प्रयेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें ।
- उत्तर-पत्र अलग से दिया गया है । इसे न तो मोड़ें और न ही विकृत करें । दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाहा कर दें।जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- ओ. एम.. आर.. पत्र पर अनुक्रमांक संख्या, पश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक संख्या और ओ. एम. आर. पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है ।
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं । प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित यंक्ति के सामने दिये गये घृत को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाड़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे ।
- 11. रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- परीक्षा के उपरान्त केवल ओ एम आर उत्तर-पत्र परीक्षा भवन में जमा कर दें।
- परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी ।

