17P/212/28

Set No I	Question Booklet No
712 000	(To be filled up by the candidate by blue/black ball-point pen)
Roll No.	
Roll No.	
(Write the digits	s in words)
	MR Answer Sheet
	(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the OMR Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR sheet No. on the Question Booklet.
- 7. Any changes in the aforesaid entries is to be verified by the invigilator, otherwise it will be
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिशे गर्स हैं।]

Total No. of Printed Pages: 20

FOR ROUGH WORK / रफ कार्य के लिए

No. of Questions: 120

11me	: 2 H	ours		18		[Full Marks : 360
Note	: (i)	Questions in	ultiple Choice Qu Section-B compri	estions ising 32	s in Section-A, 2 questions of	ection-A and Section-B and 96 Multiple Choice Biology, 32 questions of te has to attempt all 120
	(ii)	marks. One 1	many questions a mark will be ded led for each unatte	ucted j	for each incor	rect answer. Zero mark
•	(iii)	If more than		swers		proximate to the correct
		· ·	SECTI	ON –	A	
1.	Whi	ch of the follow	wing is <i>not</i> a keyv	vord?		
	(1)		(2) void) true	(4) public
2.	Whi	ch of the follow	wing is <i>not</i> a toker	. ?		
	(1) k	keywords	(2) identifiers		statement	(4) operators
3.	The las:	function call is	n which the data i	n actu	al parameters	get changed is known
	(1) c	all by value		(2)	call by refere	ence .
	(3) r	eturn by value	!		return by ref	
4.	Whice date a	h package sho	ould be imported	in a	Java program	for obtaining system
	(1) Ja	iva.lO	(2) java.date	(3)	java.util	(4) java.calendar
			(1)		
						P. T. O.

(1) continue

6.	Which of the	e followir	ig is	not a jum	p statem	ent?			
	(1) continue	2 (2) r	eturn	(3)	system.o	ut	(4)	break
7.	Through wh	nich acces	s sp	ecifier, a cl	lass mak	es its elem	ent visi	ble	to all?
	(1) public			orivate		protected			friendly
8.	Java resolve	s duplica	te va	ariable nar	ne to :				
	(1) global v	ariable			(2)	local var	iable		
	(3) most loo	cal scope	varia	able	(4)	all of the	above		
9.	If mean of fe	ollowing	freq	uency dist	ribution	is 7.5,			
		λ	3	5	7	9	11		13
		y	6	8	15	р	8		<u>4</u> j
	then value	of p will b	e:						
	(1) 3	1	(2)	5	(3)	7		(4)	1
10.	If 24 is the r	nedian ol	11,	12, 14, 18,	x + 2, x -	4, 30, 32,	35 and	41,	then x will be:
	(1) 5		(2)			21			25
11.		of 8 numb	oers	is 15. If ea	ach num	ber is mul	tiplied	by	2 the new mean
	will be: (1) 40		(2)	20	(3)	2.5		(4)	30
12.	100.0	oility of h	avin	g 53 Sunda	ay in a le	ap year is	:		
		157			(3			(4)	$\frac{3}{7}$
	/			1		,			3 3 10
13.	There are m persons sitting in a row. Two of them are selected at random. The probability that the two selected persons are not together is:								l at random. The
	(1) $\frac{2}{m}$			$\left(1-\frac{2}{m}\right)$					$) \frac{m}{(m-1)}$
					(2)				

5. Absence of which statement causes a fall-through in a switch statement?

(3) stop

(2) break

(4) fall

14. The variance of the first *n* natural number is:

(1)
$$\frac{(n+1)}{2}$$

$$(2) \quad \frac{n(n+1)}{2}$$

(3)
$$\frac{(n^3-1)^2}{8}$$

(2)
$$\frac{n(n+1)}{2}$$
 (3) $\frac{(n^3-1)}{8}$ (4) $\frac{(n^2-1)}{12}$

15. The standard deviation for the following data:

x_i	3	8	13	18	23
f_i	7	10	15	10	6

will be:

The mode of following distribution: 16.

Marks obtained	10-24	25-39	40-54	55-69	70-84	85-99
Number of students	25	29	23	19	14	10

will be:

- (1) 30.6 marks
- (2) 30 marks
- (3) 30.5 marks (4) 30.4 marks

17. If $x + iy = \frac{a + ib}{a - ib}$, then:

(1)
$$x^2 + y^2 = 1$$
 (2) $x^2 + y^2 = a^2$ (3) $x^2 + y^2 = b^2$ (4) $x^2 + y^2 = 0$

(2)
$$x^2 + y^2 = a^2$$

$$(3) x^2 + y^2 = b^2$$

(4)
$$x^2 + tt^2 = 0$$

18. Which term of the sequence:

19. Number of solution of the equation:

tanx + secx = 2cosx, lying in the interval $[0, 2\pi]$ is

Value of $\int_{a}^{\frac{\pi}{2}} \frac{dx}{(1+\tan^3 x)}$, is:

$$(3) \quad \frac{\pi}{2}$$

$$(4) \ \frac{\pi}{4}$$

If vectors $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{c} = \hat{i} + \alpha\hat{j} + \beta\hat{k}$ are linearly dependent and $|\tilde{c}| = \sqrt{3}$, then

(1) $(\alpha = 1, \beta = -1)$ (2) $(\alpha = 1, \beta = \pm 1)$ (3) $(\alpha = \pm 1, \beta = 1)$ (4) $(\alpha = 1, \beta = \pm 1)$

- **22.** If $f(x) = \frac{(x^2 1)}{(x^2 + 1)}$, for every real number x, then minimum value of f will be:
 - (1) does not exist because f is unbounded
 - (2) is not attained even though f is bounded
 - (3) is equal to 1
 - (4) is equal to (-1)
- 23. If $f(x) = \begin{vmatrix} 1 & x & (x+1) \\ 2x & x(x-1) & x(x+1) \\ 3x(x-1) & x(x-1)(x-2) & x(x+1)(x-1) \end{vmatrix}$, then value of f(100) will be

equal to:

- (1) 0
- (2) 1
- (3) 100
- (4) 99
- If vertices of $\triangle ABC$ are A(1, 4) B(2, -3), C(-1, -2), then equation of the median 24. through A will be: (1) 3x - y + 1 = 0 (2) 13x - y - 9 = 0 (3) x + y + 1 = 0 (4) x + 13y + 9 = 0

SECTION - B [BIOLOGY]

- Which metal acts as cofactor in nitrogenase? 25.
 - (1) Zn
- (2) Mo
- (3) Mg
- (4) Te

- Suicidal bags are also called: 26.
 - (1) Lysosomes
- (2) Golgibodies
- (3) Mitochondria (4) Ribosomes
- 27. Which of the following is not a six-carbon sugar?
 - (1) Fructose
- (2) Mannose
- (3) Deoxyribose (4) Galactose

- 28. Coralloid root is present in:
 - (1) Zamia
- (2) Taxus
- (3) Gnetum
- (4) Pintus

(4)

29.	29. Which of the following is an example of isozyme?							
	(1) Urease			(2)	Lactic dehyd	rogen	ase
	(3) Acetylcholine	ester	rase	(4)	Ribozyme	-	57
30.	H	aemocyanin is p	reser	nt in the blood	plasm	a of:		
) Annelids		Human		Birds	(4)	Molluscus
31.	H	eterotrichous fo	rm is					
	(1)) Volvox	(2)	Fritschiella	(3)	Oedogonium	(4)	Alternaria
32.	He	omosporous fer	n is :					
	(1)	Equisetum	(2)	Isoetes	(3)	Selaginella	(4)	Marsilea
33.	Ox	yntic glands ar	e pres	sent in :				
3		Stomach		Oesophagus	(3)	Pancrease	(4)	Small intestine
34.	34. The elevated red cell count is called:							
	(1)	Anaemia			(2)	Thalassemia		ev.
	(3)	Polycythemia			(4)	Hypoglycemi	a	
35.	Co	lumella is absen	ıt in :					
	(1)	Funaria	(2)	Riccia	(3)	Pogonatum	(4)	Anthoceros
36.	Ect	oparasite is :						
	(1)	Phytophthora	(2)	Agaricus	(3)	Erysiphe	(4)	Puccinia
37 .	W]	ich of the follov	ving o	does not occur	durin	o DNA norslina	2	
	(1)	Unwinding of	the pa	arent double he	elix	8 Divirtepine	non :	
		Complementar						
		Polymerization			m 3′ to	5'		
	(4)	Formation of sh	ort p	ieces that are u	inited	by DNA ligase		
38.		ich plant is sour				•		
		Ginkgo		Artemisia		axus	(4)	Catharanthus

39.	9. In F_2 generation phenotypic ratio 9 : 7 is result of :				
	(1) Duplicate gene action	(2) Inhibitory gene	action		
	(3) Complementary gene action	(4) Gene mutation			
40.	Green car disease of bajra is caused by :				
	(1) Phytophthora infestans	(2) Sclerospora grami	nicola		
	(3) Erysiphe pisi	(4) Helminthosporium	n oryzae		
41.	Which of the following stimulates stem blood cells?		¥0		
	(1) Erythropoietin (2) Fibrinogen	(3) Plasminogen	(4) Platelets		
42.	The AIDS virus is:				
	(1) Bacterial virus (2) Myxovirus	(3) Retrovirus	(4) Pox virus		
43.	Which of the following forms the higher	st fraction of immune	globulins?		
	(1) I_gA (2) I_gG	(3) 1 _g M	(4) I _g D		
44.	Plant of medicinal value belongs to fam	ily Acanthaceae is:			
	(1) Argemone mexicana	(2) Adhatoda vasika			
	(3) Cuscuta reflexa	(4) Polygonum barba	itum		
45.	Mycorrhiza helps in :				
	(1) Phosphate solubilisation	(2) Transpiration			
	(3) Photosynthesis	(4) N ₂ -fixation			
46.	The vagus nerve fibres inhibit the hear	t rate by releasing :			
40.	(1) adrenaline (2) noradrenaline	(3) acetylcholine	(4) sympathin		
47.	Excretion in amphibians is:				
	(1) Ammonotelic (2) Aminotelic	(3) Ureotelic	(4) Uricotelic		
40	Which of the following layer is formed	at last during gastru	lation ?		
48.	(1) Ectoderm (2) Mesoderm	(3) Endoderm	(4) Epidermis		
	(1) 23				
49.	DNA aberration is caused by : (1) UV (2) EMS	(3) X-ray	(4) ABA		
	V-1 (78)				

50.	Golden rice is ri	ch with:		
	(1) β-carotene		(2) L-Lysine	
	(3) Iron		(4) Cyanocoba	alamine ·
51.	Which of the fol	lowing hormone	increases Na-reabsorp	fion in the kidney ?
	(1) Thyroxine		(2) Aldosteror	1 Company of the Comp
	(3) ADH	ì	(4) Atrial natr	
52,	Which of the fol	lowing hormone	induces callus formati	
	(1) 2, 4-D	(2) BAP	(3) IBA	
53.	In a typical mani	100		(4) ABA
	(1) Potassium		fraction in the cell is	270.00
E4		(2) Sodium	(3) Chloride	(4) Iron
54.	15 produ		Ü	
	(1) Testes	(2) Ovary	(3) Liver	(4) Kidney
55.	Trisomy is denot	ed by :	10	
	(1) $2n-1$	(2) $2n + 1$	(3) $2n-1-1$	(4) $2n + 2$
56.	Which hormone	regulates spermat	rogenosis 2	
	(1) FSH	(2) Oxytocin		(4) 'T'
		7.00 - 3 .005555	(e) Androgen	(4) Thyrotropin
			MISTRY]	
57 .	Rank the following	ng compounds in	order of descending a	cidity :
	СООН	ОН	OН	ОН
	1			
	CH ₃	SO ₃ H		
	(A)	(B)	<i>ОСН</i> , (С)	CF ₃ (D)
	(1) $A > B > C > D$	(2) B > A > D	>C (3) B > A > C >	D (4) D>C>A>B
58.	Which of the follo			O (4) DYCYASB
		wing companies a	re aromatic ?	<i>T</i>
			()	
	(1)	(2)	(3)	⊜ (4)
		7	7)	V~/.
			. ,	P.T.O.

Which of the following compounds have Z-configuration?

- (1) A and B (2) B and C (3) A and C
- (4) All of the above
- 60. Arrage the following in increasing order of their basicity:
 - (I) OH
- (II) $C_6H_5O^*$ (III) CH_3O^-
- (IV)HCOO

(1) I < II < III < IV

(2) IV < III < II < I

(3) IV < II < I < III

- (4) II < III < I < IV
- 61. Arrange the following alcohols in order of their reactivity toward acidcatalyzed dehydration:
 - 1-Pentanol
- 2-Methyl-2-butanol 3-Methyl-2-butanol

(A)

(B)

(C)

- (1) B > C > A (2) C > B > A (3) B > A > C (4) C > A > B
- In the reaction sequence shown, the product 'Y' is: 62.

$$(CH_3)_2CO \xrightarrow{HCN} X \xrightarrow{CH_3OH} Y$$

$$H_2SO_4$$

$$(CH_3)_2CO \xrightarrow{HCN} X \xrightarrow{CH_3OH} Y$$

$$H_2SO_4$$

$$(CH_2 = C (CH_3) COOH$$

- (1) (CH₃)₂ C (OH) COOH
- (3) $CH_2 = C (CH_3) COOCH_3$ (4) $CH_3 CH = CH COOH$
- Which of the following proposed reactions would take place quickly under mild conditions?
 - CH₃CONH₂ + NaCl → CH₃COCl + NaNH₂
 - (2) C_6H_5 COCI + CH₃ NH₂ $\rightarrow C_6H_5$ CONHCH₃ + HCI
 - (3) CH₃CH₂COCI + CH₃ COOH → CH₃CH₂ COCCH₃ + HCI
 - (4) $(CH_3)_2$ CHCONH₂ + CH₃OH \rightarrow $(CH_3)_2$ CHCOOCH₃ + NH₃
- 64. Which of the following compounds reduces Tollens' reagent?
 - (1) Methanol
- (2) Acetic acid
- (3) Sucrose
- (4) Glucose

65. In the following transformation, the reagent (R) is:

$$CH_3O$$
 $CHO \xrightarrow{CH_3COONa} CH_3O$ $CH = CHCOOH$

- (1) CH₃COOH
- (2) CH₂ (COOH)₂ (3) (CH₃ CO)₂O
- (4) HCOOH
- 66. Which common analytical method will most clearly and rapidly distinguish (A) from (B)?

IR spectroscopy

(2) Chromatography

(3) NMR spectroscopy

- (4) UV spectroscopy
- 67. Which one of the following compounds will show a doublet as part of its ¹H NMR spectrum?
 - (1) CH₃CH₂CI

(2) (CH₃)₂ CHC1

(3) CH₃CH₂CH₃

- (4) $|CH_2| C < Br$ Br
- In the UV spectrum of cyclohex-2-enone, the absorption at λ_{max} 215 nm is due to 68. the transition:
 - (1) σ → σ*
- (2) $n \rightarrow \sigma^*$
- (3) $\pi \rightarrow \pi^*$
- (4) $n \rightarrow \pi^*$
- 69. Which of the following compouds has a vibration that is infrared inactive?
 - (1) Acetone
- (2) Water
- (3) 1-Butyne
- (4) 2-Butyne
- The ¹H NMR spectrum of an unknown compound shows absorptions at (multiplicities not given) δ = 7.3 (5H), 2.3 (1H) and 0.9 (6H) ppm. Which one of the following structures satisfies these data?

71.	When NH_3 reacts with $B\Gamma_3$, the resulting bond is called:									
	(1) dative bond	(2)	ionic bond							
	(3) hydrogen bond		(4)	dipole-dipole in	itera	ction				
72.	The number of unpa	aired electrons in Ni	(CO)	4 is:						
	(1) Zero	(2) One	(3)	Three	(4)	Five				
73.	The covalent radii o	f Nb and Ta are alm	ost t	he same because	of:					
	(1) their similar elec	(1) their similar electronic configuration								
	(2) their being pres	(2) their being presence in 4 <u>d</u> and 5 <u>d</u> series								
	(3) lanthanide cont	raction effect								
	(4) their being trans	sition elements								
74.	The wave character	of electrons was exp	erir	nentally verified	by:					
	(1) Einstein			Davisson and C		er				
	(3) Max Planck		(4)	Louis de Brogli	e					
75.	The shape of ClF ₃ molecule is :									
	(1) T-shaped			Tetrahedral						
	(3) Square planar		(4)	Trigonal plana	r					
76.	Which one among t	he following molect	ules	will show dipole	mor	nent?				
	(1) BF ₃	(2) CO ₂		$BeCl_2$		NH_3				
77.	The ionization ener	gies of F, N, O and (C dec	crease in the ord	er:					
	(1) F > N > O > C	(2) C>N>F>O	(3)	N > C > O > F	(4)	O > C > N > f				
78.	The transition meta	al complex used in h	omo	geneous catalys	is is :					
, 0.	(1) Ru(CO) ₈	(2) $Cu(PPh_3)_3 Br$	(3)	RhCl(PPh ₃) ₃	(4)	(Cp)₂				
79.	Which one has ver	y similar chemistry	to th	at of Al ³⁺ ?						
. •	(1) Mg^{2}	(2) Be ²⁺	(3) B ^{3.}	(4)	Ga ³⁺				

 80. Which of the following statements is false (1) Helium is less soluble in water than (2) The electron affinity of inert gases is (3) Argon was discovered by Rayleigh at (4) Compounds of Xenon are less stable. 81. Which one of the following metal ions plants? (1) Li⁺ (2) Mg²⁺ 	zero.
82. First law of thermodynamics is a staten(1) Conservation of heat(3) Conservation of momentum	(4) Conservation of energy
83. A process is spontaneous at all temper (1) $\Delta H > 0$ and $\Delta S < 0$ (3) $\Delta H = 0$ and $\Delta S = 0$	ratures when: (2) $\Delta H < 0$ and $\Delta S > 0$ (4) $\Delta H < 0$ and $\Delta S = 0$
 (1) the concentrations of the reactant (2) the rate is affected by concentration (3) the reactants do not react (4) one of the reactants is in large extended (5) The overall rate of reaction is govern (6) the rate of fastest intermediate sometimes (7) sum total of the rates of all intermediate sometimes (8) the average of the slowest intermediate sometimes (9) the rate of the slowest intermediate sometimes (1) the rate of the slowest intermediate sometimes (2) the rate of the slowest intermediate sometimes (3) the average of the slowest intermediate sometimes (4) the rate of the slowest intermediate sometimes (6) the rate of the slowest intermediate sometimes (7) more energy is stored in the calculation of the slowest intermediate sometimes (8) more surface area is available 	ned by : step rmediate steps mediate step diate step st is more efficient because in this state :
(4) negative charge is required	(†1) P.T.O.

87. $k = Ae^{-\Gamma/RT}$ is known as:

(1) Eyring equation

(3) Lindemann equation

	900 900 900	,		- and strong base	IS give
	$(1) K_h = \frac{h}{K}$	$\frac{C_m}{C_n}$ (2) K_h	$=\frac{K_b}{K_{t\nu}} \tag{3} K_b$	$= \frac{K_{h}}{K_{b}} \qquad (4) K_{h} = \frac{k}{K}$	ic.
	39. For overl		[PHYSICS]		
	$\Phi(r) = B \exp B$ B and p is:	interaction, $\left(-\frac{r}{\rho}\right)$, B and ρ are	between nearest e constants, the equi	neighbours, of the librium spacing, r_0 in te	type rms of
9(, broke p	(2) ρ/B	(3) B/o	22 A No. 100 A CO.	
	is given by:	wavelength emitt	ed by an X-ray tube	(4) ρB if 50 KV is applied acr	oss it
91.		(2) 2.5Å	(3) 25Å	/d: *= }	
				m is accelerated through length associated with	gh <i>a</i> I the
	$(1) \frac{n}{\sqrt{2meV}}$	$(2) \frac{h}{\sqrt{2mqV}}$	(3) $\frac{h}{\sqrt{2aV}}$	(4) h	
92.	The magnetic r	noment associated	with electron in fire	$\sqrt{2mV}$ it orbit of H-atom is :	
	(1) 9.27×10^{-24} (3) 9.27×10^{-20}		$(2) 5 \times 10^{-22}$	amp-m²	
93.			(4) 2 Bohr-m s in a simple cubic c	nagneton rystal with unit cell sid	e a
	(1) a	$(2) \frac{a}{\sqrt{2}}$	(3) $\frac{a}{\sqrt{3}}$	(4) $\frac{a}{2}$	
			(12)	17F3	
				**	

(2) Arrhenius equation

(4) Gibbs equation

88. Hydrolysis constant K_h for a salt made from weak acid and strong base is given

94	. The term value of a	state is given by	:	
	-	$(2) -\frac{E}{hC}$		$(4) -\frac{E}{2\pi Ch}$
95	 Which of the following momentum and commentum and commentum	owing best descr rrerponding mag	ibes the relation bet netic moment of elect	ween orbital angular
	$(1) \vec{p}_l = -\frac{2m}{e} \vec{\mu}_l$	$(2) \vec{p}_l = \frac{2m}{e} \vec{\mu}_l$	$(3) \vec{p}_j = \frac{2m}{\hbar} \vec{\mu}_j$	$(4) \vec{p}_l = -\frac{2m}{\hbar} \vec{\mu}_l$
96.	. Larmor frequency i	s given by :		
		100 1 To 100 100 100 100 100 100 100 100 100 10	(3) $v_L = \frac{eB}{4\pi mh}$	$(4) \mathbf{v}_{\perp} = \frac{eB}{m}$
97,	μ-mesons are produ	iced, if y-ray energ	zv is above ·	
		(2) 10 MeV	(3) 150 MeV	(4) 50 MeV
98.	If one state is occu other particles, the p	pied (or allowed particles are :) for one micropartic	de and is denied for
	/11 Ph	(2) Fermions	(3) Phonons	(4) Photons,
99,	The main componer in low-frequency ran	nt responsible for	the fall of gain of an I	RC-coupled amplifier
	(1) The active device		(2) Stray shunt ca	nacitance
	(3) Coupling capaci	tance C _C	(4) The grid-leak	esistance R
100.	Compared to a CB as	mplifier, the CE at		•
	(1) Lower input resi		(2) Higher output	resistance
	(3) Lower current ar	mplification	(4) Higher current	
101.	The activity of one approximately be:	g _m radium ²²⁶ F	Ra, whose half life	is 1622 years will
	(1) 1 Curie (2) 4 Curie	(3) 1 m Curie	(4) 1.66 Curie
102.	Nuclei with even mas	ss number have :		
	(1) Zero or integral s	pin	(2) Half integral sp	in
	(3) Imaginary spin		(4) None of these	111
		. (13)		
		(13)		P.T.O.
				2000.2513 X

103.	In Mosley's law $\sqrt{v} = a(Z - b)$, the screening constent 'b' for K series is:							
	(1) 1 (2) 7.4 (3) 19.6	(4) 16						
104.	For crystal having two atoms of masses m_1 and m_2 per primitive cell, square of							
	angular frequency of lattice vibration given by $w^2 = \frac{c/2}{m_1 + m_2}$. $K^2 a^2$ corresponds:							
	(1) to optical branch							
	(2) to acoustical branch							
	(3) to both acoustical and optical branches							
	(4) magnetic vibrations							
105.	An ideal revercible heat engine exhausting heat at 27°C is to have 25% efficiency. It must take heat at :							
	(1) 127°C (2) 227°C (3) 327°C	(4) 673°C						
106.	If the radius of a black body radiation enclosure is halved, temperature will become (assuming adiabatic process):							
	(1) Four times (2) Eight times (3) Double	d (4) Sixteen times						
107.	In an electromagnetic field, which one of the following remains invariant under Lorentz transformation?							
	(1) $\vec{E} \times \vec{B}$ (2) $E^2 - C^2 B^2$ (3) B^2	(4) E^2						
108.	A copper wire of uniform corss-sectional area, $1.0 \times 10^{-6} m^2$ carries a current of 1A. Assuming that each copper atom contributes one electron to the electron gas, the drift velocity of the free electrons (density of copper is $8.94 \times 10^3 \text{kg/m}^3$ and its atomic mass is $1.05 \times 10^{-25} \text{kg}$) is :							
	(1) 7.4×10^{-4} m/s (2) 74×10^{-4} m/s (3) 74×10^{-4}	$\Gamma^3 \text{ m/s}$ (4) $7.4 \times 10^{-5} \text{ m/s}$						
109.	The temperature of the surface of the sun is approximately 6000 K. If we take a big lens and focus the sun rays and produce a temperature of 8000 K. This will violate which law of thermodynamics?							
	(1) zeroth law (2) first la							
	(3) second law (4) third l	aw						
	245 CO 2.0							
	(14)							

For a thermodynamic system, work done in a process depends upon : 110. (1) The path (2) State of the system (3) External pressure (4) Nature of the system Boyle's law can be expressed in differential form as: (1) $\frac{dv}{dn} = 1$ (2) $\frac{dv}{dn} = \frac{v}{n}$ (3) $\frac{dv}{dn} = \frac{p}{v}$ (4) $\frac{dv}{dp} = -\frac{v}{p}$ 112. The equation of state of a dilute gas at very high temperature is described by $\frac{PV}{VT} = 1 + \frac{B(T)}{V}$, where, V is the volume per particle and B(T) is a negative quantity. One can conclude that this is a property of : (1) a Van der waals gas (2) an ideal Fermi-gas (3) an ideal Bose gas (4) an ideal inert gas A system of N non-interacting classical point particle is constrained to move on 113. the two-dimensional surface of a sphere. The internal energy of the system is : (1) $\frac{3}{2}NK_BT$ $(2) \frac{1}{2}NK_BT \qquad (3) NK_BT$ (4) $\frac{5}{2}NK_BT$ Which of the following relations between the particle number density n and temperature T must hold good for a gas consisting of non-interacting particles to be described by quantum statistics? (1) $\frac{n}{T^{1/2}} << 1$ (2) $\frac{n}{r^{3/2}} << 1$ (3) $\frac{n}{T^{3/2}} >> 1$ (4) $\frac{n}{T^{1/2}}$ and $\frac{n}{T^{3/2}}$ can have any value At room temperature, molar heat capacity of solids is approximately equal to : 115. (1) 10 J mole⁻¹ K⁻¹ (2) 20 J mole⁻¹ K⁻¹ (3) 25 J mole⁻¹ K⁻¹ (4) 8.31 / mole⁻¹ K⁻¹ (15)P.T.O.

	(2) Ferromagnetic to paramagnetic transition							
	(3) Normal liquid He to super fluid He transition							
	(4) Superconducting to normal state transition							
117.	The increase in entropy when 10 kg water at 100°C is converted to water vapour is approximately:							
	(1) 14,500 Joule/K			(2)	(2) 14,500 Cal/K			
	(3) 14.5×10^6 Cal	/K		(4)	$14.5 \times 10^6 \text{ K}$	Cal/K		
118.	A Carnot engine has an efficiency of 30% when the temperature of the sink is 27°C. What must be the approximate change in temperature of the source to make its efficiency 50%?							
	(1) 600 K		171 K	(3)	428 K	(4)	155°C	
119.	At what temperature, pressure remaining unchanged, will the molecular velocity (rms) of hydrogen atom will be double of its value at NTP?							
	(1) 819°C		819 K	(3)	1092°C	(4)	82 K	
120.	T is 2×10^{-5} cm. The mean free path at pressure $P \times 10^{-6}$ and temperature							
	be : (1) 2 cm	(2)	20 cm	(3)	2 m	(4)	20 m	

116. Which one of the following is a first order phase transition?

(1) Vaporization of a liquid at its boiling point

FOR ROUGH WORK / रफ कार्य के लिए

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा ओ०एम०आर० उत्तर-पत्र के दोनों पृष्टों पर केवल *नीली।काली बाल-पाइंट पेन* से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ -जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ० एम० आ२० पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक संख्या और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ट पर दिये गये निर्देशों के अनुसार बाल-प्वाइंट पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का जत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शूंन्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिये इस पुस्तिका के मुखपृष्ठ के अंदर दाला पृष्ठ तथा अंतिम खाली पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ० एम० आर० उत्तर-पत्र ही परीक्षा भवन में जमा करें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुवित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का / की भागी होगा / होगी।