1.SC Zoology CodeNo

Set No. 1

Ouestion Booklet No.

16P/216/22

	(To be fil	led up by	the candida	te by blue/l	black ball-p	ooint pen)		
Roll No.								
Serial No.	of OMR A	answer Sho	et	24(6		100	
Day and I	Date		\			(Signatu	re of Invigilat	or)

INSTRUCTIONS TO CANDIDATES

(Use only *blue/black ball-point pen* in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Ouestion Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Ouestion Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfairmeans.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero marks).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

Total No. of Printed Pages: 32

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण पृष्ठ पर दिये गए हैं।]

ROUGH WORK रफ़ कार्य

No. of Questions: 150

Time: 2 Hours Full Marks: 450

Note: (1) Attempt as many questions as you can. Each question carries 3

(Three) marks. One mark will be deducted for each incorrect

answer. Zero mark will be awarded for each unattempted question.

- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- 01. Water is a very efficient thermal buffer, because:
 - (1) Its high heat capacity
 - (2) Concentration of more salt
 - (3) Low surface tension
 - (4) Dissolve many organic matters
- **02.** Macroherbivory is best illustrated by :
 - (1) Protozoan

(2) Insect

(3) Moluccas

(4) Echinodermeta

- 03. Life cycle of monocystis includes
 - (1) Gametogony and Sporogony
 - (2) Schizogony and Gametogony
 - (3) Syzygy and Gametogony
 - (4) Sporogony only

04.	Leech is blood sucking animal nutritionally therefore leech is :					
	(1)	Sangivorous	(2)	Omnivorous		
	(3)	Herbivorous	(4)	Carnivorous		
05.	Gas	tric filament occur in :				
	(1)	Hormiphora	(2)	Aurelia		
	(3)	Obelia	(4)	Sea anemone		
06.	Sens	se organ of Aurelia is called :				
	(1)	Tentaculocytes	(2)	Tester		
	(3)	Tentilla	(4)	Nematocyst		
07.	Groo	ove of Pharynx is called:				
	(1)	Stomodaeum	(2)	Limbus		
	(3)	Siphonoglyph	(4)	Chidoglandular groove		
08.	Blac	lder worm is found in :				
	(1)	Human muscle	(2)	Muscle of pig		
	(3)	Human faeces	(4)	Soil		
			4 - 1	a mlaga in t		
09.	Fina	al moult in life cycle of Ascaris	take			
	(1)	Soil	(2)	Lung		
	(3)	Intestine	(4)	Intestine before migration		

10.	How many chambers are found in the crop of Leech?					
	(1)	Six	(2)	Eight		
	(3)	Nine	(4)	Ten		
11.	Mal	phighian tubules of Cockroacl	n ore	responsible for :		
	000000000000000000000000000000000000000					
	(1)	Excretion	(2)	Osmoregulation		
	(3)	Digestion	(4)	Respiration		
12.	Red	ula is found in all molusca ex	cept :	·		
	(1)	Bivalves	(2)	Cephalopoda		
	(3)	Scaphopoda	(4)	Aplacophora		
13.	Loca	omotry organ of starfish is :				
	(1)	Podia	(2)	Polian Vesicles		
	(3)	Stome canal	(4)	Ampullae		
14.	Res	piratory organ in Holothouria	is:			
	(1)	Papulae	(2)	Dermal Branchiae		
	(3)	Respriatory tree	(4)	Bursae		
15.	The	Excretory structure in Peripat	us is	:		
2	(1)	Malphighian tubules	(2)	Coxal Gland		
	(3)	Nephridia	(4)	Solenocytes		

16.	Brachiolaria larva is the example of class:					
	(1)	Crinoidae	(2)	Asteroidae		
	(3)	Echinoidae	(4)	Holothrundae		
		a a man m				
17.	An e	xample of wood boring mollus	sca is	:		
	(1)	Pholas	(2)	Aviculs		
	(3)	Teredo	(4)	Trigonic		
10	117L:	ch of the fellowing is connecte	d wit	th Coral Formation 2		
10.	WIII	ch of the following is connecte	u wi	in Corar Pormadon :		
	(1)	Halistemma	(2)	Millepora		
	(3)	Adamsia	(4)	Rhizostoma		
10	The	scientific name of precious Re	ed Co	oral is:		
1).	THE	scientific fields of process as		N Ref		
	(1)	Zubipore	(2)	Fungia		
	(3)	Heliopora	(4)	Corallium		
20.	Ske	leton of Demospongia is made	up v	with :		
	(1)	Silicious				
	(2)	Calacareous				
	(3)	Spongin fibres				
	(4)	Both spongin fibre and Silici	ious	fibre		

21.	The	number of C	omb i	Plate is	s pres	sent	in Hormiphore	:	
	(1)	8	(2)	6		(3)	10	(4)	12
22.	Obe	elic is a :					*		
	(1)	Polymorphic				(2)	Dimorphic		
	(3)	Trimorphic				(4)	Monomorphi	С	
23.	Plar	naria is includ	led u	nder th	ne ord	der :	ω.		
	(1)	Polycladea				(2)	Digenea	59	
	(3)	Monogenea				(4)	Tricladea		
24.	The	origin of the	Neph	redium	is:				
	(1)	Germinal				(2)	Ectodermal		
	(3)	Mesodermak				(4)	Endodermal		
25.	Eph	yra is the larv	a of :	•				•	
	(1)	Beroe				(2)	Aurelia		
	(3)	Ctenophana	19			(4)	Coeloplane		
26.	Uter	us is primates	s is :	-			9		
	(1)	Simplex type	:			(2)	Bipartite type	,	
	(3)	Bicarnuate ty	ype			(4)	Duplex type		

27.	The	dentine part of Placoid scale i	s sec	reted by :
	(1)	Osteoblast cells	(2)	Choanoblast cells
	(3)	Odontoblast cells	(4)	Chondrioblast cells
28.	Whi	ch of the following are branch	es of	VII and X cranial nerves?
	(1)	Glassopharyngeal and Hyom	andil	bular
	(2)	Palatinus and Buccalis		
	(3)	Abducens and Buccalis		
	(4)	Ophthalmicus superficialis a	nd B	ranchialis
29.	In T	eleost fishes, Ventral Aorta su Gills through Afferent br		es blood to : hial arteries and contains
		deoxygenated blood		
	(2)	Gills through Afferent branch	ial ar	teries and contains oxygenated
		blood		
	(3)		ial ar	teries and contains oxygenated
	Production (Co.)	blood	1	- has
	(4)	All parts of body through its	bran	cnes
30.	The	type of jaw suspensorium in	shark	cs is:
	(1)	Autodiastylic	(2)	Amphistylic
	(3)	Hyostylic	(4)	Streptostylic
	0.00 M			

31.	In mammals, the thick roof called Neopallium is part of:					
	(1)	Cerebrum	(2)	Cerebellum		
	(3)	Pons	(4)	Medulla Oblongata		
32.	The	type of tail (caudal fin) in sha	ırks i	s:		
	(1)	Diphycercal	(2)	Heterocercal		
	(3)	Homocercal	(4)	Isocercal		
33.	A ve	ertebra having Centrum conve	x at t	he anterior end and concave at		
		terior end is known as:				
	(1)	Opisthocoelous	(2)	Amphicoelous		
	(3)	Procoelous	(4)	Heterocoelous		
34.		ich one is a free swimming, nal?	pela	gic and neotenic Urochordate		
	110001002000		7			
	(1)	Doliolum	(2)	Salpa		
	(3)	Oikopleura	(4)	Pyrosoma		
35.	Thir	d, fourth and sixth aortic arc	hes a	re present in :		
	(1)	Sharks	(2)	Dipnoi		
	(3)	Teleosts-	(4)	Lizard		
36.	Neu	romast organs in fishes are us	seful	as:		
	(1)	Current receptors	(2)	Touch receptors		
	(3)	Thermoreceptors	(4)	Electroreceptors		

37 .	Croc	odilians posses :		
	(1)	Archinephric kidney	(2)	Pronephric kidney
	(3)	Mesonephric kidney	(4)	Metanephric kidney
38	Whic	sh of the following animal spec	cies n	oossesses single median nasal
		ing, pouched gills, absence of		
	(1)	Latimeria chalumnae	(2)	Catla catla
	(3)	Petromyzon marinus	(4)	Amphipnous cuchia
00	D	tus caroticus is found in :		
39.			(2)	Reptilia
	(1)	Amphibia	(4)	Mammals
	(3)	Birds	(4)	Mammas
40.	A tr	ue air circulation in lungs is t	he fea	ature of:
	(1)	Amphibians	(2)	Reptiles
	(3)	Birds	(4)	Mammals
41	Pow	er of memory and learning in	birds	s resides in :
71.	(1)	Cerebral cortex	(2)	Corpus striatum
	(3)	Hyperstriatum	(4)	Lateral ventricle
	272.0			
42.	Proj	ected gill septum is found in	•	
	(1)	Cat fish	(2)	Amia
	(3)	Paddle fish	(4)	Sharks

43.	Whi	ich of the following is surviving	g Cho	ondrichthyes ?
	(1)	Cladoselachi	(2)	Holocephali
	(3)	Paraselachi	(4)	Pleuracanthodi
44.	Acc	essory respiratory organs in C	larias	s batrachus are in the form of
	(1)	Labyrinthiform organs	(2)	Arborescent organs
	(3)-1	Air sacs	(4)	Vascular Skin
45.		uminant mammals, the difference of :	ent ch	nambers of stomach fall in the
	(1)	Abomasum, Rumen, Omasur	n an	d Reticulum
	(2)	Rumen, Reticulum, Abomasu	ım aı	nd Omasum
	(3)	Rumen, Reticulum, Omasum	and	Abomasum
	(4)	Rumen, Omasum, Reticulum	and	Abomasum
46.	Whi	ch type of primary sex detern	ninat	ion mechanism is followed in
	(1)	X :A ratio determines the sex		
	(2)	Presence of one or two X chro	omos	ome determines the sex
	(3)	Y-chromosome determines se		
	(4)	Haplo-diploidy during early e sex	mbry	onic development determines
47.	An a	allele is considered dominant i	f its 1	nhenotype is everygood.
	(1)	Only in heterozygous condition	on	shellotype is expressed:
	(2)	In homo as well as heterozygo		ondition
	(3)	Only in homozygous condition		
	(4)	Only in hemizygous conditon		
		toport to stops		

48.	A m	aximum freq	uenc	y of recomb	inati	on in a given	poir	nt that can
	occu	ris:						
	(1)	100%	(2)	75%	(3)	50%	(4)	25%
49.	Som	atic recombin	nation	ı in immun	oglob	in genes acco	unt f	or:
	(1)	Class switch						
	` '	Allelic exclu	2000					
	, ,							
		Affinity matu						
	(4)	Increased ex	press	sion of IgG (gene			
50.	Wha	it organelle ni	oces:	ses and pac	kages	proteins before	re se	nding them
	What organelle processes and packages proteins before sending them out of cell during secretion?							
	(1)	Outer memb			S			
		Endoplasmi						
	(2)	_		Juluin				
	(3)	Golgi compl						
5	(4)	Plasma men	nbran	ie			8	+
61	Whi	oh of the fol	lowir	a cell orga	nelle	is associated	wit	h a protein
51.		leton compos			110110			2000
					(2)	Chloroplast		
		Mitochondr	ion			Nucleus		
	(3)	NOR			(4)	Nucleus		
52.	In v	which phase	of cell	cycle DNA	beco	mes 2C from 2	IC?	
	(1)	S			(2)	GI		
	(3)	Metaphase			(4)	Anaphase		
	(0)							

50.	111 6	a centinuge separation of susp	enue	d particles is dolle by:
	(1)	Centrifugal force	(2)	Centripetal force
•	(3)	Gravitational force	(4)	Buoyant density
54.	If y	ou wish to study the region o	f bin	ding of transcription factor in
	pro	omoter DNA which of the fo	ollow	ing technique will be most
	app	propriate?		
	(1)	Microarray	(2)	Immunoprecipitation
21	(3)	Chromosome walking	(4)	DNA footprinting
55.	Wh	ich one of the following cel	l tvn	es does not divide in adult
		anisms?	- "JP	os doos not divide ili addit
8	(1)	Primary germ cells	(2)	Neurons
	(3)		(4)	
		opinionani	(+)	Corneal epithelium
56.	Dui	ring meiosis when a cell actual	ly be	comes haploid?
	(1)	At the end of second division		
	(2)	During recombination in pac	hyte	ne
	(3)	During chiasmata terminaliza		
	(4)	At the end of first division		,
57.	Mos	at of the membrana limit	. •	
	(1)	et of the membrane lipids are s		esized on
		Rough endoplasmic reticulum	1	
	(2)	Nucleolus		
	(3)	Smooth endoplasmic reticulum	m	
	(4)	None of the above		
		a ^e		7

58.	A nu	acleosome is made up of:		
	(1)	Histones (H2A, H2B, H3, H4)	and	146 bp of DNA
	(2)	Histones (HI, 2 molecules each	ch of	H2A, H2B, H3, H4) and 146
		bp of DNA		
	(3)	Histones (HI, 2 molecules each	ch of	H2A, H2B, H3, H4) and 200
		bp of DNA		
	(4)	Histones (H2A, H2B, H3, H4)	and	linker DNA
59.	For	a given gene, a diploid individu	ıal w	ill contain :
	(1)	two alleles	(2)	one allele
	(3)	multiple alleles	(4)	two genes
60.	Whi	ch law of Mendel is revealed by	yan	nonohybrid cross?
	(1)	Law of dominance		
	(2)	Law of segregation		4.1
	(3)	Law of independent assortme	ent	
	(4)			
		11 - from	tha r	place of their origin to another
61.		ration of cancerous cells from	the l	place of their origin to
		be of the body is termed as:	(2)	Diapedasis
		Metastasis	(4)	Apoptosis
	(3)	Necrosis	(')	F -1
62.	Wh	ich of the following enzymes is	use	d for synthesizing cDNA?
	(1)	DNA methylase	(2)	DNA topoisomerase
		Reverse transcriptase	(4)	Restriction endonucleases

03.		nergy to light energy?						
	(1)	Bioluminescence	(2)	Autoradiography				
	(3)	Muscle contraction	(4)	Ion transport				
64.	The	treatment of snake-bite by a	ıntiver	nom is an example of :				
	(1)	artificially acquired passive	immu	inity				
	(2)	naturally acquired passive	immuı	nity				
	(3)	innate immunity		2				
	(4)	adaptive response						
65.	The	most abundant class of anti	bodies	s in milk is :				
	(1)	IgM (2) IgD	(3)	IgG (4) IgA				
66.	Whi	ich of the following term is no	ot qua	ntitatively assesses?				
	(1)	Penetrance	(2)	Expressivity				
	(3)	Map distance	(4)	Probability				
67.	The	following pedigree show inhe	eritano	ce of an autosomal trait				
		0-	T.					
	•							
	Whi	ch of the following conclusion	n can	be drawn from this pedigree?				
	(1)	The trait is dominant	(2)	The trait is semi-dominant				
	(3)	The trait is recessive	(4)	The chart is inconclusive				

68.	How	the gene flow between	two	Mendelian populations is
	preve	ented ?		
	(1)	By mutation	(2)	By mimicry
	(3)	By recombination	(4)	By isolating mechanisms
			ni a a 1 <i>a</i>	evenue of protective mimicry ?
69.	Whic	h one of the following is a class		example of protective mimicry ?
	(1)	Drosophila	(2)	Kallima
	(3)	Apis	(4)	Neurospora
70	Whi	ch factor is important fo	or th	ne maintenance of genetic
10.		librium ?		
	•		(2)	Adaptation
	(1)	Migration		
6	(3)	Natural selection	(4)	Panmixia
71.	A ve	ry good example of living foss	sil is	***
107.0077.00	(1)	Chameleon	(2)	Sphenodon
	(3)	Hcloderma	(4)	<u>Mabuia</u>
70	Whi	ch one is called as missing li	ink?	
14.			(2)	Manis
	(1)	Macropus		
	(3)	Pteropus	(4)	Archeopteryx
73.	Poly	yploidy has played important	role	in evolution in:
	(1)	Plants	(2	
	(3)	Bacteria	(4) Virues

74	. Na	me the evolutionary biolog	gist v	who integrated evolution with
		netics:		
	(1)	Hardy	(2)	Dohzhansky
	(3)	Darwin	(4)	Lamark
75	Par	inotuo io o consesti di di		•
	· <u>ra</u>	ripatus is a connecting link b	etwee	en:
	(1)	Mollusca and Arthropoda		
8	(2)	Arthropoda and Annelida		
	(3)	Annelida and Mollusca		
	(4)	Protozoa and Echinoderma	ta	
	9	128		
76.	Wh	ich one of the following is a N	lon-d	irectional force of evolution?
	(1)	Sewall wright effect	(2)	Migration
5	(3)	Variation	(4)	Mimicry
77.	Mut the	ations play important role in first time by :	evolu	ation. This fact was realized for
	(1)	Wagner	(2)	Weismann
	(3)	Haldane	(4)	Devries
78.	Mes	vchippus was found in :		
	(1)	Eocene	(2)	Oligocene
	(3)	Miocene	(4)	Pliocene

79.	"Ont	ogeny recapitulates phylogeny	y" wa	s formulated by:
	(1)	Weinberg	(2)	Huxley
	(3)	Spencer	(4)	Haeckel
80.	The	re are different types of reprodu	active	e isolation mechanisms. Which
	type	of reproductive isolation is p	ostm	ating as well as prezygoue.
	(1)	Gametic isolation	(2)	Sexual isolation
	(3)	Ecological isolation	(4)	Seasonal isolation
81.	The	number of toes in Eohippus i	is:	
×	(1)	(0)	(3)	3 (4) 4
82.	. The	e method by which the dating	of roo	eks containing fossils is done is
	kn	own as:		
	(1)	Herpetology	(2)	Geochronology
	(3)	Chronobriology	(4)	Zoogeography
02	• 11/1	hich is the commonest method	d of f	ossilization ?
00	(1)	•	(2	n . 'fration
	(3	- tim of moulds	(4) Impression
	952	5		

04	+. P	ossils of birds have been found	in th	e rocks deposited in :
	(1		(2)	
	(3) Silurian period	(4)	Carboniferous period
85	5. W	hen two species are morphololated, they are called as?	ogical	lly similar and reproductively
	(1)	Incipient species	(2)	Subspecies
	(3)	Sibling species	(4)	Polytypic species
86	. Th	e problem of hybrid sterility tail by Aristotle in :	was d	
	(1)	Human	(2)	Mule
	(3)	Eoat	(4)	Sea Urchins
87.	(1)	ere are different concepts of species? Biological species concept Evolutionary species concept	(2)	Which one is the most widely Typological species concept Nominalirtic species concept
88.	Du vari	e to founder effect in a polability:	oulat	ion, the degree of genetic
	(1)	Is similar to original population	n	· · · · · · · · · · · · · · · · · · ·
	(2)	Remains constant		÷.
	(3)	Is increased		
	(4)	Is reduced		-

	•
89. pK values of α - amino acids are measur	ed in terms of:
	Ka
(3) Net-ve charge (4)	Net+ve charge
	atabilized by
90. α -helix structure of a protein is mainly	stabilized by .
(1) Disulphide bonds	
(2) Ionic bonds	a use and postide bond
(3) Hydrogen bonds involving C=O and	NH of different peptide bond
(4) Hydrogen bonds involving R-group	s of different amino acids
91. A protein domain represents a :	-tmotured unit
(1) Tertiary structured unit (2)	Quaternary structured unit
(3) Secondary structure (4)	Random coiled unit
	and in terms of :
92. Km of an enzyme is a constant express	Sed III terms or
(1) Substrate concentration (2)	Equilibrium constant
(3) Rate of the reaction catalyzed (4)	Turnover number
93. Citrate is not a structural analogue of phosphofructokinase-1 but it inhibits could be an example of the enzyme re-	3 dours
(1) Allosterism	
(2) Reversible covalent modification	
(3) Irreversible covalent modification	n
(4) Irreversible non-covalent modifi	cation

9	4. K	inases represent a sub-class u	ınde	r which of the major classes of
	th	e enzymes :		,
	(1	Oxido-reductases	(2	Transferases
	(3) Lyases	(4)	Isomerases
95	5. W	hich of the following best repre	esent	s a heteropolyascharide ?
	(1			18
	(3)	Poly galactosamine	(4)	
96	. α	D glucose and β-D glucose are	:	*
	(1)	Epimers	(2)	Anomers
	(3)	Enantiomers	(4)	Cis-trans isomers
97	. The	e glycolytic product enters into	TCA	cycle in the form of
	(1)	Citrate	(2)	Pyruvate
	(3)	Oxaloacetate	(4)	Acety-Co-A
98.	Wh	ich one is not an intermediate	of th	e TCA cycle 2
	(1)	Thiosuccinate	(2)	Succinate
	(3)	Succinyl-Co-A	(4)	Aconitate
99.	Whi	ch one serves as catalytic s thase ?	sub	unit of mitochondrial ATP
	(1)	α sub unit of Fo domain	(2)	β sub unit of Fo domain
	(3)	α sub unit of F1 domain	(4)	β sub unit of 1 domain
				8

one serves as coupling factor phosphorylation?	nitochondrial ATP synthesis, which r between oxidation and ADP
(1) Protons(3) Phosphates101. Which one is a constituent of simple	(2) Electrons(4) NADHple lipids ?(2) Glycerate
(1) Glycerol(3) Glyceraldehyde	(4) Glyceroacetates
102. The two strands of DNA are held to(1) Phosphodiester bonds(3) Hydrogen bonds	together by ; (2) Phosphoanhydride bonds (4) C - C covalent bonds
103. A 'syn' oriented base can be found(1) A-DNA(3) Z-DNA	(2) B-DNS (4) Triple helix
 104.A double stranded DNA assumstranded RNA makes non-helical to presence of: (1) 2'-OH in ribose of RNA (3) Modified bases in RNA 	(2) U in place of T in RNA
105. 'SNURPS' (SnRNPs) are involved(1) Nucleosomes(3) Apoptosomes	1 in making: (2) Primosomes (4) Spliceosomes

P.T.O.

			23	,				
(0)	- aradiyioid §	siand		(4)	Pancreati	c islets		
(1)	Pituitary glas Parathyroid g				Pineal gla			
(1)	nke's pouch is	asso	ciated wit	th deve	lopment o	of:		
	(4) Zona glomerulosa, Zona fascionlata, Zona retionlaris							
(4)	Zona glomer	ulosa,	Zona fas	scionlat	a. Zona ra	etionlesi-		
(3)	Zona glomer	ulosa	, Zona gra	anulos	a. Zona fa	scionle+e		
(2)	Zona fascior							
(1)	Zona granul	osa, 2	ona fasc	ianlata.	Zona reti	onlaria	: 1 *	
110. The	three layers	of adr	enal cort	ex in co	Orrect sea	llenge or		
(1)	LCG	(2)	FSH	(3)	STH	(4)	Estroge	n
tes	t for pregnanc	cy ?		-10, di 11,	ic is useu	as the mo	st comn	non
109. Pre	esence of which	h hor	mone in t	he urin	ne is used	as the me		
(1)	FSH	(2)	LH	(3)	ACTH	(4)	TSH	
	hich is not a g		rotein ho	rmone?)			•
100 ****		8 (5)		. ,	antides 200 to naction 	(4)	ACTH	
(1)	*	(2)	TRH	(3)	FSH	(4)	A COMPT T	
107. Th	ne smallest pe	ptide	hormone	is:				
(4)	Trans-actir	ng elei	ment of t	he gene	9			
(3	•	Transcription start site						
(2) Up stream	region	n		8			
(1) Down stream	Down stream region						
106. Promoter of a gene is reported to be present at -35 position. That means this sequence is located at:								
106. Pi	comoter of a	gene i	s reporte	d to be	e present	at -35 pc	osition.	That

112. Melat	tonin is synthesized from:			
(1)	Tyrosine	(2)	Tryptophan	
(3)	Melanin	(4)	Histamine	
		troge	n production, androgens are	
	natized to estrogen in:	(3)	Granulosa cells	
(1)	Thecal cells	(2)	•	
(3)	Chief cells	(4)	Leydig cells	
114. Defic	ciency of which hormone resu	ılts ir	n diabetes insipidus?	
(1)	Oxytocin	(2)	Vasopressin	
(3)	Prolactin	(4)	Insulin	
115. Which one is not a hormone of adenohypophysis?				
(1)	ACTH	(2)	ADH	
(3)	FSH	(4)	MSH	
116. Secretion of which hormone from pars distalis is increased during stress?				
(1)	ACTH	(2)	FSH	
(3)		(4)	STH	
117. Son	matostation (SST) is secreted	by pa	ancreatic:	
(1)	A cells	(2)		
(3)	- 11	(4) F cells	

118	3. Se	cretion of which hormone fro	m a	denohypophysis is under an			
	inhibitory control by the hypothalamus?						
	(1)		(2)	TSH			
	(3)	FSH	(4)	ACTH			
119). Wł	nich one is not a peptide hormo	ne?				
	(1)	Insulin	(2)	Epinephrine			
	(3)	Oxytocin	(4)	Inhibin			
120	. Slo	w block to polyspermy resulting	in re	moval of sperms from vitelline			
	(1)	indiane is accomplished by:					
	(2)	Change in membrane potenti	al				
	* (*)	Cortical reaction		36			
	(3)	Acrosomal reaction					
	(4)	ZPI interaction					
121.	Xen	opus gastrulation is initiated in	n the	region			
	(1)	Opposite to the point of sperm	n ent	rv			
	(2)	Near the vicinity of sperm ent		.,			
	(3)	Middle of animal pole					
	(4)	At the tip of posterior pole		: ·			
122.	Grey	crescent of frog embryo repres	sente	the future			
	(1)	Anterior side of developing em	herra	the future :			
	(2)	Posterior side of developing em	h				
((3)	Ventral side of developing emb	niyo				
,	18 0						

Dorsal side of developing embryo

(4)

123. Which one of the following is not relevant to cleavage divisions?						
(1)	is a size than the mother cell					
(2)	There is no growth in the volume of the embryo					
	The embruo rapidly grows in	size a	as the cell increase in number			
(3)	The divisions are rapid compa	ared t	to mitotic division			
(4)	The divisions are rapid sensit					
124. Hen	sen's node is formed during g	astru	lation of:			
(1)	Amphibians	(2)	Mammals			
(3)	Sea urchin	(4)	Birds			
125. If do	ue to mutation of a gene hir o, such transformations are na	nd lin amed	ab gets transformed into fore as:			
(1)	Polarity defect mutation	(2)	Transversion			
(3)	Transition	(4)	Homeotic transformation			
126. A fl	uid filled cavity formed durin	ng cle	eavage divisions in amphibian			
(1)	Blastula	(2)	Blastocoel			
(3)	Blastodisc	(4)	Blastopore			
127. The	127. The ability of a cell or tissue to respond to a specific induction signal					
	nown as: Determination	(2)	Specification			
(1)	Competence	(4)	Differentiation			
128. The ability of cells to achieve their respective fates by themselves without the influence of neighbouring cells is called as:						
(1)	Autonomous specification					
(2)	Conditional specification		*			
(3)	Syncytial specification					
(4	ditional specification	on				
26						

129. Ir	nsect embryos undergo :						
(1	Rotational cleavage forming syncytium						
(2		Spiral cleavage forming cells of unequal sizes					
(3	3) Superficial cleavage forming	Superficial cleavage forming syncytium					
(4		Gastrulation without cleavage divisions					
130. TI	ne dorsal most vegetal cells of l	olastu	a whic	ch are capable of inducing			
CI.	ic organizer is called as:			or madeling			
(1) Hensen's node	(2)	Prir	nitive groove			
(3) Inducer	(4)		uwkoop centre			
	the dorsal blastopore lip tissu to the ventral side of another	embr	o the	n:			
(1)	 A secondary axis is formed develops in to twins 	ed in	he tr	ansplanted embryo and			
(2)	The transplanted tissue becomes part of the ventral tissue and a normal embryo develops						
(3)		ted		. ,			
(4)							
132. En	nbryonic stem cells of mamma	1		•			
(1)	Trophectoderm						
(3)		(2)		r cell mass			
(-)	The gametes	(4)	Blas	tocoels			
133. The	e most abundant greenhouse	as is	re				
(1)	methane	(2)		om J1. 11			
(3)		8 6		on dioxide			
(00),	**	(4)		us oxide			
134.Wh	ich one of the following anima	als had	heco	me outined.' I to			
(1)	cheetah	(2)					
(3)	one horned rhinoceros	00 State		leopard			
		(4)	great	Indian bustard			

135. Which one of the following does not show cooperative hunting?						
(1) hyenas		(2)	lions			
(3) wild dog	gs	(4)	tigers			
136. An interaction involving 2-species populations when species A benefits and species B is not affected is know as:						
(1) neutral		(2)	amensalism			
		(4)	protocooperation			
(3) commen	154115111	X	•			
137. Communica	tion involving stridula	ition	is found in:			
(1) moths		(2)	butterflies			
(3) crickets	3	(4).	flies			
 138. Locusts exhibit both solitary and gregarious phases. Young locusts reared in isolation exhibit moderate activity levels while hoppers reared under crowded conditions engage in long flights. Adult locusts that develop from solitary locusts retain prothoracic glands but these are absent from adults that develop from gregarious hoppers. Which one of the following techniques can be used to reduce the general activity of the gregarious hoppers? (1) autoradiography and cytoimmunochemistry (2) radioimmunoassay (3) transplantation (4) administration of antibodies against the specific hormone 139. Which of the following does not involve agonistic interactions? 						
	torial behaviour					
(2) domin	(2) dominance behaviour					
(3) discip	(3) disciplinary action by parents during weaning					
(4) preda	atory behaviour					
28						

140. Wi	nich of the following method is no netics?	t used in the field of behavioural					
(1)	cross-fostering experiments						
(2)	quantitative trait locus analysis						
(3)							
(4)							
141. A chemical used for intraspecific communication is known as:							
(1)	on allama	2021					
(3)	a kairamana	2) a pheromone					
(-)	(2	a synomone					
142. Which one of the following is the earliest type of communication channel, from an evolutionary viewpoint?							
(1)	tactile (2	and the second of the second o					
(3)	visual (4) auditory					
(1) (2) (3) (4)	a group of flies on a ripe banana an ant colony a herd of elephants a vampire bat colony	1					
144. When an unpalatable species mimics another unpalatable species it is known as?							
(1)	Batesian mimicry (2)	Wasmannian mini					
(3)	Aggressive mimicry (4)	Tallillici y.					
145. Study of learning phenomenon involving stimulus-stimulus pairing is a characteristic feature of:							
	operant conditioning (2)	classical conditioning					
(3)	learning sets (4)	habituation					

146. If two organisms are in the same phylum, they must also be in the						
same:						
(1)	Species	(2)	Class			
(3)	Kingdom	(4)	Family			
147. Which one of the following is known to give Biological species concept?						
(1)	Mayr	(2)	Darwin			
(3)	Linnaeus	(4)	Candolle			
148. Orig	in of species due to geographi Sympatric speciation Parapatric speciation	(2) (4)	solation is referred as : Allopatric speciation Peripatric speciation			
149. In case of Bombyx mori, silk thread is made from:						
(1)	Subcutaneous layer of larva		Subcutaneous layer of adult			
(3)	Salivary glands of larva	(4)	Salivary glands of adult			
150. Pebrine is a disease caused by protozoan parasite affecting: (1) Apiculture (3) Lac culture (4) Pisciculture						

ROUGH WORK एक कार्य

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली-काली बाल-प्वाइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों
- ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्नपुस्तिका पर अनुक्रमांक और ओ॰ एम॰ आर॰ पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो संबंधित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य
- 11. रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ एम आर उत्तर-पत्र परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।