M.Sc Statistics code No

16P/221/8

1044 Question Booklet No.

	(To be fille	ed up by the can	didate by b	lue/black b	oall-point pen)
Roll No.					
Roll No. (Write the digits	in words)	***************************************	9016		
Serial No. of OM	IR Answer She	et	NO(A		
Day and Date	*************				(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as
- Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment

| उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए हैं|

No. of Printed Pages: 60+2

No. of Questions/प्रश्नों की संख्या : 150

Time/समय : 21/2 Hours/घण्टे

Full Marks/पूर्णांक : 450

Note:

- (1) Attempt as many questions as you can. Each question carries 3 marks.

 One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.

 अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 अंक का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जाएगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।
- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
 यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।

1. A random experiment contains

- (1) at least one outcome
- (3) at most one outcome एक यादृच्छिक परीक्षण अंतर्विष्ट करता है
- (1) कम-से-कम एक परिणाम
- (3) अधिक-से-अधिक एक परिणाम
- (2) at least two outcomes
- (4) at most two outcomes
- (2) कम-से-कम दो परिणाम
- (4) अधिक-से-अधिक दो परिणाम

(186)

2. At a large university, the probability that a student takes Calculus and Statistics in the same semester is 0.0125. The probability that a student takes Statistics is 0-125. Find the probability that a student is taking Calculus, given that he or she is taking Statistics

किसी बड़े विश्वविद्यालय में, किसी छात्र के एक ही सत्र में कैलकूलस और सांख्यिकी लेने की प्रायिकता 0.0125 है। किसी छात्र के सांख्यिकी लेने की प्रायिकता 0.125 है। किसी छात्र के कैलकूलस लेने की, यदि दिया गया हो कि वह सांख्यिकी लेता है, प्रायिकता प्राप्त कीजिए

(1) 0.0125

(2) 0.0100

(3) 0.1000

(4) 0.4500

3. Which statement is false?

- (1) The classical definition applies when there are equally likely outcomes to an experiment
- (2) The empirical definition occurs when number of times an event happen is divided by the number of observations
- (3) A subjective probability is based on whatever information is available
- (4) The general rule of addition is used when the events are mutually exclusive कौन-सा कथन गलत है?
- पारम्परिक परिभाषा लागू होती है, जब परीक्षण के परिणाम के सम-संभावित होते हैं
- (2) प्रयोग सिद्ध परिभाषा आती है, जब घटना के घटित होने के बारों की संख्या प्रेक्षणों की संख्या से विभाजित की जाती है
- (3) वस्तुनिष्ठ प्रायिकता जो भी उपलब्ध सूचना है पर आधारित है
- (4) जोड़ का सामान्य नियम तब प्रयुक्त होता है जब परिणाम परस्पर अपवर्जी है
- 4. Given that P(A) = 2/3, P(B) = 3/8 and P(AB) = 1/4, then A and B are

(1) independent

(2) dependent

(3) mutually exclusive

(4) equally likely

प्रदत्त है कि P(A) = 2/3, P(B) = 3/8 एवं P(AB) = 1/4, तब A और B

(1) स्वतंत्र हैं

(2) आश्रित हैं

(3) परस्पर अपवर्जी हैं

- (4) सम-संभाव्य हैं
- 5. Which one among the following is true? निम्नांकित में से कौन एक सही है?
 - (1) $P(A \cap \overline{B}) = P(B) P(A \cup B)$ (2) $P(A \cap \overline{B}) = P(A) P(A \cap B)$
 - (3) $P(A \cap \overline{B}) = P(B) P(A \cap B)$ (4) $P(A \cap \overline{B}) = P(A) + P(\overline{B})$
- 6. The spinner, shown in the figure below, is spun twice. What is the probability that it will land in section G the first time and then in section B the second

नीचे के चित्र में दर्शाया गया चक्रण दो बार घुमाया जाता है। क्या प्रायिकता है कि यह पहली बार अनुभाग G में और दूसरी बार अनुभाग B में रुकेगा?

- (1) 1/2
- (2) 1/4
- (3) 1/8
- (4) 1/16
- 7. A pair of dice are rolled. What is the probability of getting a sum 10 or less? एक जोड़ी पासे लुढ़काए जाते हैं। 10 या इससे कम योग पाने की प्रायिकता क्या है?
 - (1) 3/36
- (2) 10/36
- (3) 15/36
- (4) 33/36

 Let the random variable X be a random number with the uniform density curve given below. P(0.6 < X < 1.2) is

मानिए कि यादृच्छिक चर नीचे दिये गये सम-घनत्व वक्र वाली कोई यादृच्छिक संख्या है। P(0.6 < X < 1.2) &

- (1) 0.30
- (2) 0-40
- (3) 0-60
- (4) 0.90
- Zip Fit Tyre Company stocks three brands of tyre-brand A, brand B and brand C. 40% are brand A, 35% are brand B and 25% are brand C. The 9. percentage of defective tyres are 2% of brand A, 1% of brand B and 3% of brand C. If a tyre is picked at random, what is the probability that it is

जिप फिट टायर कम्पनी टायर के तीन ब्रांड-ब्रांड A, ब्रांड B और ब्रांड C का भंडारण करती है। ब्रांड A 40% है, ब्रांड B 35% है और ब्रांड C 25% है। ब्रांड A के 2%, ब्रांड B के 1% और ब्रॉड C के 3% टायर दोचपूर्ण हैं। यदि एक टायर को यादृच्छिक रूप से चुना जाता है, क्या है प्रायिकता कि यह दोषपूर्ण है?

- (1) 0.019
- (2) 0.366
- (3) 0.250
- (4) 0.075
- The probability that the Red River will flood in any given year has been estimated from 200 years of historical data to be one in four. This means
 - (1) The Red River will flood every four year
 - (2) In the next 100 years, the Red River will flood exactly 25 times
 - (3) In the last 100 years, the Red River flooded exactly 25 times
 - (4) In the next 100 years, the Red River will flood about 25 times

200 वर्षों के ऐतिहासिक आँकड़ों से किसी दिये गये वर्ष में रेड नदी में बाढ़ आने की प्रायिकता चार में एक होना आकलित है। इसका अर्थ है

- रेड नदी में प्रत्येक चार वर्ष पर बाढ़ आएगी
- (2) अगले 100 वर्षों में रेड नदी में ठीक 25 बार बाढ़ आएगी
- (3) विगत 100 वर्षों में रेड नदी में ठीक 25 बार आयी थी
- (4) अगले 100 वर्षों में रेड नदी में करीब 25 बार बाढ़ आएगी
- 11. All human blood can be 'ABO' typed as belonging to one of A, B, O or AB types. The actual distribution varies slightly among different groups of people, but for a randomly chosen person from North America, the following are the approximate probabilities :

Blood type	0	A	В	AB
Probability	0.45	0.40	0.11	0.04

Consider an accident victim with type B blood. She can only receive a transfusion from a person with type B or type O blood. What is the probability that a randomly chosen person will be suitable donor?

(1) about ·11 (2) about ·15 (3) about .45 सभी मानव रक्त 'ABO' प्रकार, जैसे A. B. O अथवा AB प्रकारों में से किसी एक को हो सकते (4) about .56 हैं। विभिन्न लोगों के समूहों के मध्य वास्तविक बंटन में हल्का अन्तर होता है, किन्तु यादृच्छिक रूप से उत्तर अमरीका से चयनित लोगों के लिए सज्ञिकटतः प्रायिकताएँ निम्नांकित हैं :

रक्रा कर	0	A	В	AD
संभावना	0.45	0.40		AB
	1	0.40	0-11	0.04

B रक्त प्रकार वाले एक दुर्घटना पीड़ित का विचार करें। वह प्रकार B अथवा प्रकार O रक्त वाले व्यक्ति से रक्त ग्रहण कर सकती है। क्या प्रायिकता है कि एक यादृच्छिक रूप से चुना गया व्यक्ति

- (1) करीब ·11
- (2) करीब ·15
- (3) करीब ·45
- (4) करीब ·56

12. The probabilities that a student pass in Mathematics, Physics and Chemistry are m, p, c respectively. Of these subjects, the student has a 75% chance of passing in at least one, a 50% chance of passing in at least two and 40% chance of passing in exactly two. Which of the following relationships are true?

किसी छात्र के गणित, भौतिकी और रसायन शास्त्र में उत्तीर्ण होने की प्रायिकता क्रमशः m, p, c है। इन विषयों में से, किसी छात्र का कम-से-कम एक में उत्तीर्ण होने की प्रायिकता 75% है, कम-से-कम दो में उत्तीर्ण होने की प्रायिकता 50% और ठीक दो में उत्तीर्ण होने की प्रायिकता 40% है। निम्नांकित सम्बन्धों में से कौन सही है?

(1)
$$p + m + c = 19/20$$

(2)
$$p + m + c = 27/20$$

13. Given P(A) = 0.30, P(B) = 0.78, $P(A \cap B) = 0.16$. What are the probabilities $P(A^c \cap B^c)$ and $P(A \cap B^c)$?

(1) 0.08 and 0.14

(2) 0·14 and 0·08

(3) 0.08 and 0.34

(4) 0.14 and 0.34

 $P(A) = 0.30, P(B) = 0.78, P(A \cap B) = 0.16$ प्रदत्त है। प्रायिकताएँ $P(A^c \cap B^c)$ एवं $P(A \cap B^c)$ क्या हैं?

(1) 0.08 और 0.14

(2) 0.14 और 0.08

(3) 0.08 और 0.34

(4) 0.14 और 0.34

14. A natural number is selected from the first 20 natural numbers. The probability that $\frac{x^2 - 15x + 50}{x - 15} < 0$ is

प्रथम 20 प्राकृतिक संख्याओं में से एक प्राकृतिक संख्या चयनित है। $\frac{x^2-15x+50}{x-15}$ < 0 की

प्रायिकता है

(1) 4/5

(2) 3/5

(3) 2/5

(4) 1/5

- 15. It has been estimated that about 20% of people between the ages of 18 and 25 have used Marijuana in the last year. Which of the following is correct about this statement?
 - (1) Five people of this age group were randomly selected. This means that exactly one of them must have used Marijuana in the last year
 - (2) A million people from this age group were randomly selected. There must be exactly 200000 of them that have used Marijuana in the last year
 - (3) Twenty people were randomly selected from this age group. Eighteen of them used Marijuana in the last year. The next person selected at random will have a lower probability of using Marijuana
 - (4) A thousand people from this age group were randomly selected. It is not unusual to find that 217 of them have used Marijuana in the last year
 - यह अनुमानित है कि 18 और 25 की आयु के बीच के करीब 20% लोगों ने पिछले वर्ष गांजा का उपयोग किया है। इस कथन के बारे में निम्नांकित में से कौन सही है?
 - (1) इस आयु समूह के पाँच व्यक्तियों को यादृष्क्किक तौर पर चुना गया। इसका अर्थ है कि उनमें से ठीक एक ने पिछले वर्ष गांजा का अवश्य उपयोग किया था
 - (2) इस आयु समूह में से एक मिलियन लोगों को यादृच्छिक रूप से चुना गया। उनमें से ठीक 200000 ने सुनिश्चित रूप से पिछले वर्ष गांजा का अवश्य उपयोग किया है
 - (3) इस आयु समूह से यादृच्छिक रूप से बीस व्यक्तियों का चयन किया गया। उनमें से पिछले वर्ष अठारह ने गांजा उपयोग किया था। यादृच्छिक तौर पर चयनित अगला व्यक्ति गांजा उपयोग की प्रायिकता कमतर रखने वाला होगा
 - (4) इस आयु समूह से एक हजार व्यक्ति यादृच्छिक रूप से चुने गये। उनमें से 217 ने पिछले वर्ष गांजा का उपयोग किया है, पाना अस्वाभाविक नहीं है

Consider the following function:

$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ \frac{x+1}{2} & \text{if } 0 \le x < 1 \\ 1 & \text{if } 1 \le x \end{cases}$$

Which of the following statements are always true?

 $S_1: F(x)$ is cumulative distribution function of some random variable X

$$S_2: P(X=0)=1/2$$

$$S_3: P(X = .5) = 3/4$$

Choose the correct answer from the following :

- S₁ and S₂ are true but S₃ is false
- (2) S₂ and S₃ are true but S₁ is false
- (3) S₁ and S₃ are true but S₂ is false
- (4) S1, S2 and S3 all are true

निम्नलिखित फलन को मानिए :

$$F(x) = \begin{cases} 0 & , & \text{alg} & x < 0 \\ \frac{x+1}{2} & , & \text{alg} & 0 \le x < 1 \\ 1 & , & \text{alg} & 1 \le x \end{cases}$$

निम्नलिखित कथनों में से कौन सदैव सही है?

 $S_1:F(x)$ किसी यादृच्छिक चर X का संचयी बंटन फलन है

$$S_2: P(X=0)=1/2$$

$$S_3: P(X=.5)=3/4$$

निम्नलिखित से सही उत्तर चुनिए :

- (1) S_1 और S_2 सही हैं परन्तु S_3 गलत है
- (2) S_2 और S_3 सही हैं परन्तु S_1 गलत है
- (3) S_1 और S_3 सही हैं परन्तु S_2 गलत है
- (4) S₁, S₂ और S₃ सभी सही हैं

17. A random variable X has the following probability mass function:

$$f(x) = \begin{cases} kx & \text{, if } x = 0, 1, 2\\ (x-2)k & \text{, if } x = 3, 4\\ (x-4)k & \text{, if } x = 5\\ (x-4)k^2 & \text{, if } x = 6\\ xk^2 + k & \text{, if } x = 7 \end{cases}$$

Then the value of a such that $P(X \le a) > 1/2$ is

(1) less than 3

- (2) equal to 3
- (3) less than 4 but more than 3 (4) equal to 4 कोई यादृच्छिक चर X निम्नलिखित प्रायिकता मात्रा फलन रखता है

$$f(x) = \begin{cases} kx & , & \text{alf } x = 0, 1, 2 \\ (x-2)k & , & \text{alf } x = 3, 4 \\ (x-4)k & , & \text{alf } x = 5 \\ (x-4)k^2 & , & \text{alf } x = 6 \\ xk^2 + k & , & \text{alf } x = 7 \end{cases}$$

तो α का मान ताकि P(X ≤ α)>1/2

- (2) 3 के बराबर है
- (1) 3 से कम है(3) 4 से कम परन्तु 3 से अधिक है

Consider the following function 18.

$$F(x) = \begin{cases} 0 & \text{, if } x < 0 \\ 3x^2 - 2x^3 & \text{, if } 0 \le x < 1 \\ 1 & \text{, if } 1 \le x \end{cases}$$

- (1) It is cumulative distribution function of a discrete random variable
- (2) It is cumulative distribution function of a continuous random variable (3) It is cumulative distribution function of a mixed (discrete and continuous
- (4) It is not cumulative distribution function of any random variable

निम्नलिखित फलन को मानिए :

$$F(x) = \begin{cases} 0 & , & \text{atc} & x < 0 \\ 3x^2 - 2x^3 & , & \text{atc} & 0 \le x < 1 \\ 1 & , & \text{atc} & 1 \le x \end{cases}$$

- यह किसी असतत याद्रच्छिक चर का संचयी बंटन फलन है
- (2) यह किसी सतत यादृच्छिक चर का संचयी बंटन फलन है
- (3) यह किसी मिश्रित (असतत और सतत दोनों) यादृच्छिक चर का संचयी बंटन फलन है
- (4) यह किसी भी यादृच्छिक चर का संचयी बंटन फलन नहीं है
- Which of the following are probability mass functions?
 - (i) $f(x) = \frac{(x-6)}{5}$, for x = 7, 8, 9 and zero elsewhere
 - (ii) $f(x) = \frac{x}{21}$, for x = 1, 2, 3, 4, 5, 6 and zero elsewhere
 - (iii) $f(x) = \frac{x^2}{55}$, for x = 1, 2, 3, 4, 5 and zero elsewhere

Choose the answer from the following:

(1) Only (i) and (ii)

(2) Only (i) and (iii)

(3) Only (ii) and (iii)

(4) All of the three

निम्नलिखित में से कौन प्रायिकता मात्रा फलन हैं?

निम्नालाखत म स पत्र आपपत्र । । ।
$$f(x) = \frac{(x-6)}{5}$$
, $x = 7, 8, 9$ के लिये और अन्यत्र शून्य

(ii)
$$f(x) = \frac{x}{21}$$
, $x = 1, 2, 3, 4, 5, 6 के लिये और अन्यत्र शून्य$

(iii)
$$f(x) = \frac{x^2}{55}$$
, $x = 1, 2, 3, 4, 5$ के लिये और अन्यत्र शून्य

निम्नलिखित से उत्तर चुनिए :

(1) केवल (i) और (ii)

(2) केवल (i) और (iii)

- (3) केवल (ii) और (iii)
- (4) सभी तीनों

10

20. A continuous random variable X has the probability density function f(x) = kx(1-x) for $0 \le x \le 1$ and zero elsewhere.

Assertion (A): The median (m) of the distribution can be $\frac{(1 \pm \sqrt{3})}{2}$ in addition

Reason (R): The median (m) should be solution of the equation $4m^3 - 6m^2 + 1 = 0$

Choose your answer from the following codes:

- (1) Both (A) and (R) are true and (R) is correct explanation of (A)
- (2) Both (A) and (R) are true but (R) is not correct explanation of (A)
- (3) (A) is true but (R) is false
- (4) (A) is false but (R) is true

एक सतत यादृच्छिक चर X का प्रायिकता घनत्व फलन $f(x)=kx(1-x),\ 0\le x\le 1$ के लिये और अन्यत्र शून्य है।

कथन (A) : बंटन की माध्यिका (m) $\frac{1}{2}$ के अतिरिक्त $\frac{(1\pm\sqrt{3})}{2}$ हो सकती है

कारण (R) : माध्यिका (m) समीकरण 4m³ -6m² +1 = 0 का हल होना चाहिए निम्नलिखित कूटों में से अपना उत्तर चनिए :

- (1) (A) और (R) दोनों सही हैं और (A) की सही व्याख्या (R) है
- (2) (A) और (R) दोनों सही हैं परन्तु (A) की सही व्याख्या (R) नहीं है
- (3) (A) सही है परन्तु (R) गलत है
- (4) (A) गलत है परन्तु (R) सही है

- 21. The probability density function of a continuous random variable X is f(x) = 6(2-x)(x-1) for 1 ≤ x ≤ 2 and zero elsewhere. Which of the following statements are true?
 - S: The logarithm of arithmetic mean is the geometric mean of the logarithms of the variables.
 - P: The geometric mean of the above distribution is (1/16) exp (19/6) Choose your answer from the following codes:
 - (1) Both S and P are true
- (2) S is true but P is false
- (3) S is false but P is true
- (4) Both S and P are false

एक सतत यादृच्छिक चर X प्रायिकता घनत्व फलन $f(x)=6(2-x)(x-1), 1 \le x \le 2$ के लिये और अन्यत्र शून्य है। निम्नलिखित कथनों में से कौन सत्य है?

- S : समान्तर माध्य का लघुगणक चरों के लघुगणकों का गुणोत्तर माध्य होता है।
- P : उपरोक्त बंटन का गुणोत्तर माध्य (1/16) exp (19/6) है।
- S और P दोनों सही हैं
- (2) S सही है परन्तु P गलत है
- (3) S गलत है परन्तु P सही है
- (4) S और P दोनों गलत हैं
- 22. If F denotes the cumulative distribution function, which of the following is not always true for all real values of x and y?

यदि F संचयी बंटन फलन निर्दिष्ट करता है, तो x और y के सभी वास्तविक मानों के लिये निम्नलिखित में से कौन सदैव सही नहीं है?

- (1) $F_{X,Y}(x,y) \le (F_X(x) + F_Y(y))/2$
- (2) $F_{X,Y}(x,y) \ge F_X(x) + F_Y(y) 1$
- (3) $F_{X,Y}(x,y) \le 1 F_X(x) F_Y(y)$
- (4) $F_{X,Y}(x,y) \leq [F_X(x)F_Y(y)]^{1/2}$

If F denotes the cumulative distribution function, which of the following is always true for all real values of x and y? यदि F संचयी बंटन फलन निर्दिष्ट करता है, तो x और y के सभी वास्तविक मानों के लिये

निम्नलिखित में से कौन सदैव सही है?

- (1) $F_{X,Y}(x,y) \ge F_X(x) + F_Y(y)$ (2) $F_{X,Y}(x,y) \ge F_X(x) + F_Y(y) 1$
- (3) $F_{X,Y}(x,y) \le 1 F_X(x) F_Y(y)$ (4) $F_{X,Y}(x,y) \ge (F_X(x) + F_Y(y))/2$
- Consider the function $F_{X,Y}(x,y) = 1$ for $x + 2y \ge 1$ and zero for x + 2y < 1. In this 24. context, read the following carefully:

Assertion (A): $F_{X,Y}(x,y)$ is not joint cumulative distribution function of any random variable (X, Y).

Reason (R): The value of $F_{X,Y}(x,y)$ jumps from 0 to 1 at every point (x,y)lying on the line x + 2y = 1.

Choose your answer from the following codes:

- (1) Both (A) and (R) are true and (R) is correct explanation of (A)
- (2) Both (A) and (R) are true but (R) is not correct explanation of (A)
- (3) (A) is true but (R) is false
- (4) (A) is false but (R) is true

फलन $F_{X,Y}(x,y)=1, \ x+2y\geq 1$ के लिये और शून्य x+2y<1 के लिये, को मानिए। इस सन्दर्भ में, निम्नलिखित को ध्यानपूर्वक पढ़िए :

कथन $(A): F_{X,Y}(x,y)$ किसी भी यादृच्छिक चर (X,Y) का संयुक्त संचयी बंटन फलन नहीं है।

कारण (R) : रेखा x+2y=1 पर पड़ने वाले सभी बिन्दुओं पर $F_{X,Y}(x,y)$ का मान 0 से 1

निम्नलिखित कूटों में से अपना उत्तर चुनिए :

- (1) (A) और (R) दोनों सही हैं और (A) की सही व्याख्या (R) है
- (2) (A) और (R) दोनों सही हैं परन्तु (A) की सही व्याख्या (R) नहीं है
- (3) (A) सही है परन्तु (R) गलत है
- (4) (A) गलत है परन्तु (R) सही है

- 25. F is the cumulative distribution function and f, which is symmetric about zero, is the corresponding probability density function of a continuous random variable X. Which of the following statements are true for all choices of a > 0?
 - (i) F(-a) + F(a) = 1

- (ii) P(|X| > a) = 2F(-a)
- (iii) $P((|X| \le a) = 2F(a) 1$

Choose the answer from the following:

(1) Only (i) and (ii)

(2) Only (i) and (iii)

(3) Only (ii) and (iii)

(4) All of the three

F संचयी बंटन फलन और f, जो कि शून्य के परित समित है, किसी सतत यादृच्छिक चर X का तदनुरूप प्रायिकता घनत्व फलन है। $\alpha>0$ के सभी चयनों के लिये निम्नलिखित कथनों में से कौन सही है?

(i) F(-a) + F(a) = 1

- (ii) P(|X| > a) = 2F(-a)
- (iii) $P((|X| \le a) = 2F(a) 1$

निम्नलिखित में से उत्तर चुनिए :

(1) केवल (i) और (ii)

(2) केवल (i) और (iii)

(3) केवल (ii) और (iii)

- (4) उपरोक्त सभी
- 26. X is a continuous random variable having cumulative distribution function F(x) and probability density function f(x). Which of the following statements are true?
 - S: f(x) cannot exceed F(x) for any x
 - P: f(x) cannot exceed unity for any x

Choose your answer from the following codes:

- (1) Both S and P are true
- (2) S is true but P is false
- (3) S is false but P is true
- (4) Both S and P are false

X संचयी बंटन फलन F(x) और प्रायिकता पनत्व फलन f(x) रखने वाले एक सतत यादृच्छिक चर है। निम्नलिखित कथनों में से कौन सही है?

S : किसी भी x के लिये f(x), F(x) से अधिक नहीं हो सकता है।

P: किसी भी x के लिये f(x) एक से अधिक नहीं हो सकता है।

निम्नलिखित कूटों में से अपना उत्तर चुनिए :

S और P दोनों सही हैं

(2) S सही है परन्तु P गलत है

(3) S गलत है परन्तु P सही है

(4) S और P दोनों गलत हैं

The random variable (X, Y) has the joint probability density function 27.

$$f(x,y) = \begin{cases} kx(x-y) & \text{for } 0 < x < 2 \text{ and } -x < y < x \\ 0 & \text{elsewhere} \end{cases}$$
the following expression

Which of the following expressions give the correct value of k?

S:
$$k^{-1} = \int_0^2 \int_{-x}^x x(x-y) \, dy \, dx$$

P:
$$k^{-1} = \int_0^2 \int_y^2 x(x-y) dx dy + \int_{-2}^0 \int_{-y}^2 x(x-y) dx dy$$

Choose your answer from the following codes:

(1) Both S and P are true

(2) S is true but P is false

(3) S is false but P is true

(4) Both S and P are false

याटृच्छिक चर (X, Y) संयुक्त प्रायिकता घनत्व फलन

$$f(x,y) = \begin{cases} kx(x-y) & 0 < x < 2 और -x < y < x के लिये \\ 0 & अन्यत्र$$

रखता है। निम्नलिखित व्यंजकों में से कौन k का सही मान देता है?

S:
$$k^{-1} = \int_0^2 \int_{-x}^x x(x-y) \, dy \, dx$$

$$P: k^{-1} = \int_0^2 \int_y^2 x(x-y) \, dx \, dy + \int_{-2}^0 \int_{-y}^2 x(x-y) \, dx \, dy$$

निम्नलिखित कूटों में से अपना उत्तर चुनिए :

(1) S और P दोनों सही हैं

(1) S और P दोनों सही है
 (2) S सही है परन्तु P गलत है
 (3) S गलत है परन्तु P सही है
 (4) S और P दोनों गलत हैं

28. The random variable (X, Y) has the joint probability density function

$$f(x, y) = \begin{cases} \frac{x(x-y)}{8}, & \text{for } 0 < x < 2 \text{ and } -x < y < x \\ 0, & \text{elsewhere} \end{cases}$$

Which of the following give the correct expression for the marginal distribution of Y?

$$S: g(y) = \int_0^2 \frac{x(x-y)}{8} dx$$

$$P: g(y) = \begin{cases} \int_{y}^{2} \frac{x(x-y)}{8} dx & \text{if } 0 < y < 2 \\ \frac{x(x-y)}{8} dx & \text{if } -2 < y < 2 \end{cases}$$

Choose your answer from the following codes:

- (1) Both S and P are true
- (2) S is true but P is false
- (3) S is false but P is true
- (4) Both S and P are false

याद्गच्छिक चर (X, Y) संयुक्त प्रायिकता घनत्व फलन

$$f(x,y) = \begin{cases} \frac{x(x-y)}{8} & , \ 0 < x < 2 \text{ silt} - x < y < x \Rightarrow \text{ ferd} \\ 0 & , \end{cases}$$
3.7

निम्नलिखित में से कौन Y के सीमान्त बंटन के लिये सही व्यंजक देता है?

(1) S और P दोनों सही हैं

- (2) S सही है परन्तु P गलत है
- (3) S गलत है परन्तु P सही है
- (4) S और P दोनों गलत हैं

29. F(x) is the cumulative distribution function of a random variable X, then E(X)

किसी यादृच्छिक चर X का संचवी बंटन फलन F(x) है, तो E(X)

(1) $\int_0^\infty (1 - F(x)) dx$

- (2) $\int_{-\infty}^{\infty} (1 F(x)) dx$
- (3) $\int_0^\infty (1-F(x)) dx \int_{-\infty}^0 F(x) dx$ (4) $\int_0^\infty (1-F(-x)+F(x)) dx$

की तरह दिया जा सकता है।

30. If F(x) is the cumulative distribution function of a random variable X, then

किसी यादृच्छिक चर X का संचयी बंटन फलन F(x) है, तो $E(X^2)$

- (1) $\int_0^\infty x (1 F(x)) dx$
- (2) $\int_{-\infty}^{\infty} 2x (1 F(x)) dx$
- (3) $\int_0^\infty x (1 F(x) + F(-x)) dx$ (4) $\int_0^\infty 2x (1 F(x) + F(-x)) dx$

की तरह दिवा जा सकता है।

- 31. The family of parametric distributions, for which the mean and variance does
 - (1) Binomial

(2) Geometric

(3) Hypergeometric

(4) Cauchy

प्राचल बंटन के उस समूह का नाम बताइए, जिसका माध्य एवं प्रसरण मौजूद नहीं है

- (1) द्विपद
- (2) ज्यामितीय
- (3) हॉयपर ज्यामितीय (4) कॉची

- X is binomially distributed with parameters n and p. What is distribution of 32. यदि X द्विपद बंटन से है जिसके प्राचल n और p हैं, तो Y = n - X का बंटन क्या होगा? (4) $B(n, p^2)$ (3) B(n,p) (2) N (0,1) (1) B(n,q) In hypergeometric distribution, H.G. (N, k, n), if $N \to \infty$, $\frac{k}{N} \to p$, the 33.
- hypergeometric distribution reduces to (4) Normal (3) Binomial (2) Geometric हाँयपर ज्यामितीय बंटन H.G. (N , k , n), में यदि $N \to \infty$, $\frac{k}{N} \to p$, तो हाँयपर ज्यामितीय बंटन
 - बदल जायेगा (4) प्रसामान्य (3) द्विपद (2) ज्यामितीय (1) गामा
 - Poisson distribution is always 34.
 - (1) positively skewed

(2) negatively skewed

(3) symmetric प्वासों बंटन हमेशा (4) None of the above

(1) धनात्मक विषम

(2) ऋणात्मक विषम

(3) सम

- (4) उपरोक्त में से कोई नहीं
- If X and Y are independent Poisson variates with means λ_1 and λ_2 respectively, यदि X और Y स्वतंत्र प्वासों चर हैं, जिनका माध्य λ_1 और λ_2 है, तो X=Y कि प्रायिकता क्या 35. find the probability that X = Yहोगी?
 - (1) $e^{-(\lambda_1+\lambda_2)}$

(2) $e^{-\{\lambda_1+\lambda_2\}} \frac{\lambda_1\lambda_2}{r}$

(3) $(\lambda_1 e^{-\lambda_1})(\lambda_2 e^{-\lambda_2})$

(4) $e^{-(\lambda_1 + \lambda_2)} \sum_{r=0}^{\infty} \frac{(\lambda_1 \lambda_2)^r}{(r!)^2}$

36.	If $X \sim N$ (8, 64), the	standard normal	deviate Z	will	he
	यदि X ~ N (8, 64), तो	प्रमापित प्रसामान्य चर	Z होगा		JC

(1) $Z = \frac{8-X}{8}$ (2) $Z = \frac{X-8}{8}$ (3) $Z = \frac{X-8}{\sqrt{3}}$	$\frac{-64}{\sqrt{8}}$ (4) $Z = \frac{X - 8}{64}$
--	---

Mean deviation about mean for a normal distribution is 37. प्रसामान्य बंटन के लिये माध्य के सापेक्ष माध्य विचलन का मान क्या होगा?

- (1) o (2) 2_o $(3) 3\sigma$ (4) \$ o
- Two independent random variates X and Y are both normally distributed with means 1 and 2 and standard deviations 3 and 4 respectively. The p.d.f. of

दो स्वतंत्र चर X और Y प्रसामान्य बंटन से हैं, जिनका माध्य 1 और 2 है और मानक विचलन 3 और 4 है। Z = X - Y का p.d.f. होगा

(1)
$$\frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{X-\mu}{\sigma}\right)^2}$$
 (2) $\frac{1}{7\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{Z+3}{5}\right)^2}$

(3)
$$\frac{1}{5\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{Z+1}{5}\right)^2}$$
 (4) $\frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{Z+3}{7}\right)^2}$

If the m.g.f. of a random variable X is $(\frac{1}{3} + \frac{2}{3}e^{t})$, then X is a 39.

(1) Binomial variate

(2) Poisson variate

(3) Bernoulli variate

(4) Normal variate

एक यादृच्छिक चर X की m.g.t. ($\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ होगा

- (1) द्विपद चर
- (2) प्वासों चर
- (3) बरनोली चर
- (4) प्रसामान्य चर

(186)

40. If X is a random variable and $f(x)$ is its p.d.f., $E\left(\frac{1}{X}\right)$ is used to fine (1) first central moment (2) geometric mean (3) arithmetic mean (4) harmonic mean यदि X एक यादृष्टिक चर है जिसका p.d.f. $f(x)$ है, तो $E\left(\frac{1}{X}\right)$ होगा (1) प्रथम केन्द्रीय आपूर्ण (2) ज्यामितीय माध्य (4) हरात्मक माध्य (4) हरात्मक माध्य (5) गणितीय माध्य (6) हरात्मक माध्य (7) हरात्मक माध्य (8) हरात्मक माध्य (9) हरात्मक माध्य (10) $\frac{7}{16}$ (11) $\frac{7}{16}$ (12) $\frac{7}{32}$ (3) $\frac{11}{16}$ (4) $\frac{12}{15}$ (4) $\frac{7}{16}$ (12) $\frac{7}{32}$ (3) $\frac{11}{16}$ (4) $\frac{12}{15}$ (4) $\frac{12}{15}$ (5) $\frac{1}{16}$ (7) $\frac{1}{16}$ (8) $\frac{1}{16}$ (9) $\frac{1}{16}$ (10) $\frac{1}{16}$ (11) $\frac{1}{16}$ (22) $\frac{7}{16}$ (33) $\frac{1}{16}$ (44) $\frac{1}{16}$ (45) $\frac{1}{16}$ (75) $\frac{1}{16}$ (77) $\frac{1}{16}$ (87) $\frac{1}{16}$ (98) $\frac{1}{16}$ (99) $\frac{1}{16}$ (11) $\frac{1}{16}$ (12) $\frac{1}{16}$ (13) $\frac{1}{16}$ (14) $\frac{1}{16}$ (15) $\frac{1}{16}$ (15) $\frac{1}{16}$ (16) $\frac{1}{16}$ (17) $\frac{1}{16}$ (18) $\frac{1}{16}$ (18) $\frac{1}{16}$ (19)			where pdf. $E\left(\frac{1}{2}\right)$	is used to find
(1) first central moment (2) geometric mean (3) arithmetic mean (4) harmonic mean यदि X एक यादृच्छिक चर है जिसका p.d.f. $f(x)$ है, तो $E\left(\frac{1}{X}\right)$ होगा (1) प्रथम केन्द्रीय आधूर्ण (2) ज्यामितीय माध्य (4) हरात्मक माध्य 41. If X ~ b (3, ½) and Y ~ b (5, ½), then the probability of P (X + Y = 3) is यदि X ~ b (3,½) एवं Y ~ b (5,½), तो प्रायिकता P (X + Y = 3) होगी (1) $\frac{7}{16}$ (2) $\frac{7}{32}$ (3) $\frac{11}{16}$ (4) $\frac{12}{15}$ 42. The skewness of a binomial distribution will be zero if दिश्च बंदम का विषमता शून्य होगा यदि (1) $P < \frac{1}{2}$ (2) $P > \frac{1}{2}$ (3) $P = \frac{1}{2}$ (4) $P < q$ 43. For an exponential distribution with p.d.f. घातांकी बंदम जिसका p.d.f. है $f(x) = \frac{1}{2}e^{-\frac{x}{2}}; x \ge 0$ its mean and variance are उसका माध्य एवं प्रसरण होगा (1) (½, 2) (2) (2, ¼) (3) (½, ¼) (4) (2, 4)	40. If X is a ran	ndom variable and J (x	is its p.d.i., ~ (X)
बार मामानिक मिल्या सिंद्र स्वादि स्वाद स्वादि स्वाद स्वादि स्वादि स्वादि स्वादि स्वाद स्व			(2) geometric me	an
 (1) प्रथम केन्द्रीय आघूर्ण (2) ज्यामितीय माध्य (3) गणितीय माध्य (4) हरात्मक माध्य 41. If X ~ b (3, ½) and Y ~ b (5, ½), then the probability of P (X+Y=3) is यदि X ~ b (3,½) एवं Y ~ b (5,½), तो प्रायिकता P (X+Y=3) होगी (1) 7/16 (2) 7/32 (3) 11/16 (4) 12/15 42. The skewness of a binomial distribution will be zero if द्विपद बंटन का विषमता शून्य होगा यदि (1) p < ½ (2) p > ½ (3) p = ½ (4) p < q 43. For an exponential distribution with p.d.f. घातांकी बंटन जिसका p.d.f. है f(x) = ½ e^{-x/2}; x ≥ 0 its mean and variance are उसका माध्य एवं प्रसरण होगा (1) (½, 2) (2) (2,¼) (3) (½,¼) (4) (2,4) 	(3) arithmet	tic mean		
 (1) प्रथम केन्द्रीय आघूर्ण (2) ज्यामितीय माध्य (3) गणितीय माध्य (4) हरात्मक माध्य 41. If X ~ b (3, ½) and Y ~ b (5, ½), then the probability of P (X+Y=3) is यदि X ~ b (3,½) एवं Y ~ b (5,½), तो प्रायिकता P (X+Y=3) होगी (1) 7/16 (2) 7/32 (3) 11/16 (4) 12/15 42. The skewness of a binomial distribution will be zero if द्विपद बंटन का विषमता शून्य होगा यदि (1) p < ½ (2) p > ½ (3) p = ½ (4) p < q 43. For an exponential distribution with p.d.f. घातांकी बंटन जिसका p.d.f. है f(x) = ½ e^{-x/2}; x ≥ 0 its mean and variance are उसका माध्य एवं प्रसरण होगा (1) (½, 2) (2) (2,¼) (3) (½,¼) (4) (2,4) 	यदि X एक य	ादृच्छिक चर है जिसका p.d.f	$f(x)$ है, तो $E\left(\frac{1}{X}\right)$	होगा
 (3) गणितीय माध्य (4) हरात्मक माध्य 41. If X ~ b (3, ½) and Y ~ b (5, ½), then the probability of P (X+Y=3) is यदि X ~ b (3,½) एवं Y ~ b (5,½), तो प्रायिकता P (X+Y=3) होगी (1) 7/16 (2) 7/32 (3) 11/16 (4) 12/15 42. The skewness of a binomial distribution will be zero if द्विपद बंटन का विषमता शून्य होगा यदि (1) p<½ (2) p>½ (3) p=½ (4) p<q< li=""> 43. For an exponential distribution with p.d.f. घातांकी बंटन जिसका p.d.f. है f(x)=½ e^{-x/2}; x≥0 its mean and variance are उसका माध्य एवं प्रसरण होगा (1) (½,2) (2) (2,¼) (3) (½,¼) (4) (2,4) </q<>			(2) ज्यामितीय माध्य	
यदि $X \sim b$ $(3, \frac{1}{2})$ एवं $Y \sim b$ $(5, \frac{1}{2})$, तो प्रायकता $P(X+Y=3)$ लेख (1) $\frac{7}{16}$ (2) $\frac{7}{32}$ (3) $\frac{11}{16}$ (4) $\frac{12}{15}$ 42. The skewness of a binomial distribution will be zero if दिवद बंटन का विषमता शून्य होगा यदि (1) $p < \frac{1}{2}$ (2) $p > \frac{1}{2}$ (3) $p = \frac{1}{2}$ (4) $p < q$ 43. For an exponential distribution with p.d.f. घातांकी बंटन जिसका p.d.f. है $f(x) = \frac{1}{2} e^{-\frac{x}{2}}; x \ge 0$ its mean and variance are $\frac{1}{2} = \frac{1}{2} = $	(३) गणितीय र	माध्य		1/ 2) is
यदि $X \sim b$ $(3, \frac{1}{2})$ एवं $Y \sim b$ $(5, \frac{1}{2})$, तो प्रायकता $P(X+Y=3)$ लेख (1) $\frac{7}{16}$ (2) $\frac{7}{32}$ (3) $\frac{11}{16}$ (4) $\frac{12}{15}$ 42. The skewness of a binomial distribution will be zero if दिवद बंटन का विषमता शून्य होगा यदि (1) $p < \frac{1}{2}$ (2) $p > \frac{1}{2}$ (3) $p = \frac{1}{2}$ (4) $p < q$ 43. For an exponential distribution with p.d.f. घातांकी बंटन जिसका p.d.f. है $f(x) = \frac{1}{2} e^{-\frac{x}{2}}; x \ge 0$ its mean and variance are $\frac{1}{2} = \frac{1}{2} = $	1C 17 L/O	1) and Y ~ b (5, 1), the	n the probability of	P(X+Y=3) is
(1) $\frac{7}{16}$ (2) $\frac{7}{32}$ (3) $\frac{11}{16}$ (4) $\frac{7}{15}$ 42. The skewness of a binomial distribution will be zero if द्विपद बंटन का विषमता शून्य होगा यदि (1) $p < \frac{1}{2}$ (2) $p > \frac{1}{2}$ (3) $p = \frac{1}{2}$ (4) $p < q$ 43. For an exponential distribution with p.d.f. घातांकी बंटन जिसका p.d.f. है $f(x) = \frac{1}{2}e^{-\frac{x}{2}}; x \ge 0$ its mean and variance are उसका माध्य एवं प्रसरण होगा (1) $(\frac{1}{2}, 2)$ (2) $(2, \frac{1}{4})$ (3) $(\frac{1}{2}, \frac{1}{4})$ (4) $(2, 4)$	41. If X ~ D (S,	3 1 एवं Y~b(5, 1/2), तो	प्रायिकता $P(X+Y=3)$	3) होगी
(1) 16 (2) 32 (16) 42. The skewness of a binomial distribution will be zero if द्विपद बंटन का विषमता शून्य होगा यदि (1) p<½ (2) p>½ (3) p=½ (4) p <q 43.="" an="" distribution="" e<sup="" exponential="" f(x)="½" for="" p.d.f.="" with="" घातांकी="" जिसका="" बंटन="" है="">-x/2; x≥0 its mean and variance are उसका माध्य एवं प्रसरण होगा (1) (½,2) (2) (2,¼) (3) (½,¼) (4) (2,4)</q>	ald V of			(4) 12
द्विपद बंटन का विषमता शून्य होगा यदि $(1) \ p < \frac{1}{2} \qquad (2) \ p > \frac{1}{2} \qquad (3) \ p = \frac{1}{2} \qquad (4) \ p < q$ 43. For an exponential distribution with p.d.f. घातांकी बंटन जिसका p.d.f. है $f(x) = \frac{1}{2} e^{-\frac{x}{2}}; \ x \ge 0$ its mean and variance are 3 सका माध्य एवं प्रसरण होगा $(1) \ (\frac{1}{2}, 2) \qquad (2) \ (2, \frac{1}{4}) \qquad (3) \ (\frac{1}{2}, \frac{1}{4}) \qquad (4) \ (2, 4)$	1.0		10	**
द्विपद बंटन का विषमता शून्य होगा यदि $(1) \ p < \frac{1}{2} \qquad (2) \ p > \frac{1}{2} \qquad (3) \ p = \frac{1}{2} \qquad (4) \ p < q$ 43. For an exponential distribution with p.d.f. घातांकी बंटन जिसका p.d.f. है $f(x) = \frac{1}{2} e^{-\frac{x}{2}}; \ x \ge 0$ its mean and variance are 3 सका माध्य एवं प्रसरण होगा $(1) \ (\frac{1}{2}, 2) \qquad (2) \ (2, \frac{1}{4}) \qquad (3) \ (\frac{1}{2}, \frac{1}{4}) \qquad (4) \ (2, 4)$	42. The skews	ness of a binomial dist	ribution will be zero	if
(1) $p < \frac{1}{2}$ (2) $p > \frac{1}{2}$ (3) $p = \frac{1}{2}$ (4) $p < q$ 43. For an exponential distribution with p.d.f. घातांकी बंदन जिसका p.d.f. है $f(x) = \frac{1}{2}e^{-\frac{x}{2}}; x \ge 0$ its mean and variance are उसका माध्य एवं प्रसरण होगा (1) $(\frac{1}{2}, 2)$ (2) $(2, \frac{1}{4})$ (3) $(\frac{1}{2}, \frac{1}{4})$ (4) $(2, 4)$	ियात संदय व	हा विषमता शून्य होगा यदि		
43. For an exponential distribution with p.d.f. घातांकी बंदन जिसका p.d.f. है $f(x) = \frac{1}{2} e^{-\frac{x}{2}}; x \ge 0$ its mean and variance are $3सका \text{ माध्य एवं } \text{ प्रसरण होगा}$ $(1) \left(\frac{1}{2}, 2\right) \qquad (2) \left(2, \frac{1}{4}\right) \qquad (3) \left(\frac{1}{2}, \frac{1}{4}\right) \qquad (4) \left(2, 4\right)$	(1) $p < \frac{1}{2}$	(2) $p > \frac{1}{2}$		(4) p < q
घातांकी बंटन जिसका p.d.f. है $f(x) = \frac{1}{2} e^{-\frac{x}{2}}; x \ge 0$ its mean and variance are $3सका माध्य एवं प्रसरण होगा $ (3) $(\frac{1}{2}, \frac{1}{4})$ (4) $(2, 4)$ (1) $(\frac{1}{2}, 2)$ (2) $(2, \frac{1}{4})$ (3)			with p.d.f.	
$f(x) = \frac{1}{2} e^{-\frac{2}{2}}; x \ge 0$ its mean and variance are उसका माध्य एवं प्रसरण होगा $(1) \left(\frac{1}{2}, 2\right) \qquad (2) \left(2, \frac{1}{4}\right) \qquad (3) \left(\frac{1}{2}, \frac{1}{4}\right) \qquad (4) \left(2, 4\right)$	43. For an ex	kponenuar diodis		
$f(x) = \frac{1}{2} e^{-\frac{2}{2}}; x \ge 0$ its mean and variance are उसका माध्य एवं प्रसरण होगा $(1) \left(\frac{1}{2}, 2\right) \qquad (2) \left(2, \frac{1}{4}\right) \qquad (3) \left(\frac{1}{2}, \frac{1}{4}\right) \qquad (4) \left(2, 4\right)$	घातांकी बंट	न जिसका p.d.f. है		
its mean and variance are उसका माध्य एवं प्रसरण होगा (1) $(\frac{1}{2}, 2)$ (2) $(2, \frac{1}{4})$ (3) $(\frac{1}{2}, \frac{1}{4})$ (4) $(2, 4)$	alm e-	f(x) =	$\frac{1}{2}e^{-\frac{x}{2}}; x \ge 0$	
उसका माध्य एवं प्रसरण होगा (3) $(\frac{1}{2}, \frac{1}{4})$ (4) $(2, 4)$ (1) $(\frac{1}{2}, 2)$ (2) $(2, \frac{1}{4})$ 20	ite meat			
(1) $(\frac{1}{2}, 2)$ (2) $(2, \frac{1}{4})$ 20	its meas	ः चयम् होगा	- 100 M	
(1) $(\frac{1}{2}, 2)$ (2) $(2, \frac{1}{4})$ 20	उसका माध	व्य एवं असर्ग राज		(4) (2,4)
20		100 10 11	(5) (2) 4)	(N. 40) N. 50(5)
	(1) (2)	E 170	20	
(196)	(186)		W-177	

The p.m.f. of the random variable X is $P(X=r)=q^{r-1}p$; $r=1,2,3,\cdots$ The

यदि यादृच्छिक चर X का p.m.f. है $P(X=r)=q^{r-1}p; r=1, 2, 3, \cdots X$ का m.g.f. (1) $\frac{e^t}{1-qe^t}$ (2) $\frac{pe^t}{1-qe^t}$ (3) $\frac{p}{qe^t}$ (4) $\frac{qe^t}{pq-1}$

The m.g.f. of the random variable whose moments are $\mu'_r = (r+1)!2^r$ 45.

एक यादृच्छिक चर जिसके आधूर्ण है μ', ≈(r+1)!2', का m.g.f. होगा

- (1) $(1-2t)^{-2}$ (2) (2t-1)
- (3) $\frac{1}{1-2t}$ (4) $(1-4t)^2$

46. If a random variable X has mean 3 and standard deviation 5, then the variance

यदि एक यादृच्छिक चर X का माध्य 3 एवं मानक विचलन 5 है, तो चर Y=2X-5 का प्रसरण

- (1) 25
- (2) 45
- (3) 100
- (4) 50

47. The m.g.f. of a random variable X is

एक यादृच्छिक चर X का $\mathrm{m.g.f.}$ है

$$M_X(t) = \frac{2}{5} + \frac{1}{3}e^{2t} + \frac{4}{15}e^{3t}$$

The expected value of X is

X का प्रत्याशित मान होगा

- (1) 22 15

8.	If X is a SNV, ii	1011 2 71 10 II I	mma variate with p	Ŕ
	यदि X एक SNV है	, तो ½ X² एक गाम	। चर होगा जिसके प्राचल	(A) 1 1
	(1) 1, ½	(2) $\frac{1}{2}$, 1	(3) $\frac{1}{2}$, $\frac{1}{2}$	(4) 1, 1
9.	If a random var	iable X has the	p.d.f.	
		f(x) =	0 < x < 1 0, otherwise	
	then the p.d.f.	of $y = 4x + 3$ is		1200 marks
	(1) $\frac{3}{16}(y-3)$	(2) $2y + 3$		(4) 3x
	की एक गार्टिखक	चर X का p.d.f. है		
	याद एक पापुर उ	f(x) =	= 3x, 0< x<1 = 0, अन्यथा	
	तो $y = 4x + 3$ क	ा p.d.f. होगा		(4) 20
	$(1)^{-3}(y-3)$	(2) $2y + 3$	(3) $4y + 5$	(4) 3x
	16		n(V=2) f	hen the mean of the Pois
	rr v ie a Poisso	on variate with P	(X=1)=P(X=2),	
50	variate is equ	al to	-1) = P(X=2), तो प	वासों चर का माध्य बराबर होन (4) 3
	यदि X एक प्वास	तें चर हे आर मात	-1)	(4) 3
		(0) 1	(0)	
	(1) 2	X-7	of N	population units WOR is प्रतिदर्श प्राप्त होंगे?
	her	of possible sampl	es of size nout of it	
5	1. The number	 ० ३ WOD तमिबे	es or size nout हंसे n आकार के कितने (3) (**)	प्रतिदशे प्राप्त होग !
	एक N यूनिट र	तमाष्ट्र स WOR जा	(17)	(4) 1
		(2) N !	से n आकार के कितन (अ) ("r) 22	(4) n!
	(1) N ²	(2)	N. 100	
	A-7		22	17

(3) one way (4) n^2 ways

	n आकार का एक ब्र	मरहित प्रतिदर्श कित	ने प्रकार से हो सकता है	?	
	(1) n तरीके से	(2) n! तरीके से	(3) एक तरीके से	(4) n ² तरीके से	
53.	Sampling is the population are	only method	for selecting units	s, when the units i	n the
	(1) 1 to 100	(2) 1 to 1000	(3) infinite .	(4) finite	
	केवल प्रतिदर्शन ही इकाइयों की संख्या है	समंकों के संकलन	की एकमात्र व्यावहारिक	विधि है, यदि समष्टि के	अन्दर
	(1) 1 से 100 तक	(2) 1 से 1000	तक (3) अनन्त	(4) सीमित	
54.	The standard err	or of the sampl	e median is	11 1 3 1 2 4 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	
	प्रतिदर्श माध्यिका की :				
			(3) $\frac{\pi\sigma}{n}$	(4) $\sqrt[n]{\frac{\pi}{2n}}$	
55.	The standard erro	or of sample co	rrelation coefficient	2.70	
	प्रतिदर्श सहसम्बन्ध गुण	क की प्रमाप बटि व	ala ≱	18	
	$(1) \frac{1-r^2}{n}$	$(2) \ \frac{1-r^2}{\sqrt{n}}$	(3) $\frac{1-r}{n}$	(4) $\frac{1-r}{\sqrt{r}}$	
56.	The standard error दो प्रतिदर्श प्रमाप विचल	of the difference न $(s_1 - s_2)$ का	e of two sample stan	\sqrt{n} dard deviation $(s_1 - s_2)$	2) is
	(1) $\sqrt{\frac{\sigma_1^2}{2n_1} + \frac{\sigma_2^2}{2n_2}}$	(2) $\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	(3) $\sqrt{\frac{\sigma_1 \sigma_2}{n_1 n_0}}$	(4) $\frac{\sigma_1}{\sigma_1} + \frac{\sigma_2}{\sigma_2}$	
(186)			23	$n_1 n_2$	
				(P.T.	0.j

52. An unordered sample of size n can occur in

(2) n! ways

(1) n ways

57.	distributed as	, then the sum of the variates $(X_1 + X_2)$ is
	(1) normal distribution	(2) binomial distribution
	(3) Poisson distribution	(4) hypergeometric distribution
	यदि $X_1 \sim b(n_1, p_1)$ और $X_2 \sim b(n_2, p_1)$	$_{2}$), तो चर $(X_{1}+X_{2})$ के योग का बंटन होगा
	(1) प्रसामान्य बंटन	(2) द्विपद बटन
	(3) प्वासों बंटन	(4) हॉयपर ज्यामितीय बंटन
58.	If X_1 and X_2 are two independent respectively, then the variable (X_1)	Poisson variates with parameters λ_1 and λ_2 + X_2) follows
	(1) $B(\lambda_1 + \lambda_2)$	(2) $P(\lambda_1 + \lambda_2)$
	(3) normal distribution	(4) Gamma distribution
	होगा	जिनका प्राचल λ_1 और λ_2 है, तो चर $(X_1 + X_2)$ (3) प्रसामान्य बंटन (4) गामा बंटन
59.	and the second s	l variates with mean μ and variance σ^2 , then
		चर है जिसका माध्य μ और प्रसरण σ^2 है, तो \overline{X}
	(1) $N(\mu, \sigma^2)$ (2) $N\left(\mu, \frac{\sigma^2}{n}\right)$	(3) $N(\mu, \sigma)$ (4) $N\left(\mu, \frac{\sigma}{n}\right)$
60	(1) always positive (3) positive or negative	(2) always negative (4) zero
	(3) positive of	24

निरपेक्ष विभ्रम का मान है

(1) सदैव धनात्मक

(2) सदैव ऋणात्मक

(3) धनात्मक या ऋणात्मक

- (4) शून्य
- In a test of H_0 : p = 0.4 against H_1 : $p \neq 0.4$, a sample of size 100 produces $Z=1\cdot28$ for the value of the test statistic. Thus the p-value (or observed level of significance) of the test is approximately equal to $H_0: p = 0.4$ के विपरीत $H_1: p \neq 0.4$ के किसी परीक्षा में 100 आकार वाला प्रतिदर्श परीक्षण प्रतिदर्शज के मान के लिए $Z=1\cdot 28$ उत्पादित करता है। अतः परीक्षा के लिए p-मान (अथवा प्रेक्षित महत्त्व स्तर) सन्निकटतः बराबर है
 - (1) 0.90
- (2) 0.40
- (3) 0.05
- (4) 0.20
- 62. A random sample of 100 voters in a community produced 59 voters in favour of candidate A. The observed value of the test statistic for testing the null hypothesis H_0 : p = .5 versus the alternative hypothesis H_1 : $p \neq .5$ is एक समुदाय के 100 **मतदाताओं को एक यादृच्छिक प्रतिदर्श ने प्रत्याशी** A के पक्ष में 59 मतदाताओं को उत्पादित किया। शून्य परिकल्पना $H_0: p = 5$ बनाम वैकल्पिक परिकल्पना H₁: p≠ 5 की परीक्षा के लिए परीक्षण प्रतिदर्श का अवलोकित मान है
 - (1) 1.80
- (2) 1.90
- (3) 1.83
- (4) 1.28
- Let X_1, X_2, \dots, X_n be i.i.d. random variables from $N(\mu, 1)$. μ is unknown such 63. that $\mu \in \Theta = \{2, 4\}$. Consider the test $H_0: \mu = 2$ against $H_1: \mu = 4$. What will be the critical region for the test? You can take sample mean as a test statistic. माना कि X_1,X_2,\cdots,X_n , $N\left(\mu,1\right)$ से i.i.d. यादृच्छिक चर हैं। μ ऐसे अज्ञात है कि $\mu \in \Theta = \{2,4\}.$ $H_0: \mu = 2$ के विपरीत $H_1: \mu = 4$ की परीक्षा मानिए। इस परीक्षा के लिए क्रान्तिक क्षेत्र क्या होगा? प्रतिदर्श माध्य को आप परीक्षण-प्रतिदर्शन ले सकते हैं।
 - (1) $\vec{x} = 4 + z_\alpha / \sqrt{n}$

(2) $\bar{x} > 1/2 + z_{\alpha} / \sqrt{n}$

(3) $\bar{x} > 2 + z_n / \sqrt{n}$

(4) $\bar{x} < 4 + z_a / \sqrt{n}$

where, z_* is an α -quantile of standard normal distribution. जहाँ, z, मानक प्रसामान्य बंटन का α-विभाजक है।

A Statistics Professor would like to determine whether students in his class 64. showed improved performance on the final examination as compared to the mid-term examination. A random sample of 4 students selected from a large class revealed the following mid-term and final scores:

सांख्यिकी के एक प्रोफेसर निर्णय करना चाहेंगे कि क्या उनके कक्षा में छात्रों ने मध्य-अवधि परीक्षा की तुलना में अंतिम परीक्षा में सुधार किया है। एक बड़ी कक्षा से चयनित 4 छात्रों के एक यादृच्छिक प्रतिदर्श ने निम्नांकित मध्य-अवधि और अंतिम के प्राप्तांक को प्रकट करता है :

Student (ভার)	1	2	3	4
Mid-term (मध्य-अवधि)	70	62	57	68
Mid-term (मध्य-अस्त्र) Final (अतिम)	80	79	87	88

Making the appropriate assumptions, the value of the test statistic is उपयुक्त पूर्वानुमान बनाकर, प्रतिदर्शज परीक्षा का मान है

(1) 19-25/8-30

(2) 19.25/(8.30/2)

(3) 19.25/(2/8.30)

(4) 19·25/√(28·295/4+28·295/4)

- A null hypothesis can only be rejected at the 5% significance level if and only if 65.
 - (1) a 95% confidence interval includes the hypothesized value of the parameter
 - (2) a 95% confidence interval does not include the hypothesized value of the parameter
 - (3) the null hypothesis is void
 - (4) the null hypotheses include sampling error
 - कोई शून्य परिकल्पना 5% सार्थकता स्तर पर अस्वीकार हो सकती है यदि और केवल यदि
 - (1) 95% विश्वास अन्तराल प्राचल के परिकल्पित मान को शामिल करता है
 - (2) 95% विश्वास अन्तराल प्राचल के परिकल्पित मान को शामिल नहीं करता है
 - (3) शून्य परिकल्पना निष्प्रभावी है
 - (4) शून्य परिकल्पनाएँ प्रतिदर्श त्रुटि को सम्मिलित करती हैं

66. Type I error occurs when

- (1) the null hypothesis is incorrectly accepted when it is false
- (2) the null hypothesis is incorrectly rejected when it is true
- (3) the sample mean differs from the population mean
- (4) the test is biased प्रथम प्रकार की त्रुटि होती है जब
- शून्य परिकल्पना गलती से स्वीकार कर लिया जाय जब कि यह गलत है
- (2) शून्य परिकल्पना गलती से अस्वीकृत कर दिया जाय जब कि यह सही है
- (3) प्रतिदर्श माध्य समष्टि माध्य से भिन्न है
- (4) परीक्षण एकांगी है
- Herbicide A has been used for years in order to kill a particular type of weed. but an experiment is to be conducted in order to see whether a new Herbicide B, is more effective than Herbicide A. Herbicide A will continue to be used unless there is sufficient evidence that Herbicide B is more effective. The alternative
 - (1) Herbicide A is more effective than Herbicide B
 - (2) Herbicide A is not more effective than Herbicide B
 - (3) Herbicide B is more effective than Herbicide A
 - (4) Herbicide B is not more effective than Herbicide A शाकनाशी A एक विशेष प्रकार के अपतृण को नष्ट करने के लिए वर्षों से प्रयोग किया जा रहा है, किन्तु यह देखने के लिए क्या एक नया शाकनाशी B, शाकनाशी A से अधिक प्रभावकारी है, एक प्रयोग परिचालित किया जाता है। शाकनाशी A का प्रयोग किया जाना तब तक जारी रहेगा जब तक पर्याप्त साक्ष्य नहीं मिल जाता है कि शाकनाशी B अधिक प्रभावकारी है। इस समस्या में बैकल्पिक परिकल्पना है कि
 - शाकनाशी A शाकनाशी B से अधिक प्रभावकारी है
 - (2) शाकनाशी A शाकनाशी B से अधिक प्रभावकारी नहीं है
 - (3) शाकनाशी B शाकनाशी A से जिल्हा प्रभावकारी है
 - (4) शाकनाशी B शाकनाशी A से अधिक प्रभावकारी नहीं है

		tolero	te
68.	The maximum probability of a type is called the	e I error that the decision maker will tolera	ic.
	(1) critical value	(2) tolerance value	
	(3) confidence level	(4) significance level	
	प्रथम प्रकार त्रुटि की अधिकतम प्रायिकता	जो कि निर्णय करने वाला सहन कर सकता है, को ब	तहा
	जाता है		
	(1) क्रान्तिक मान	(2) सहनशील मान	
	(3) विरवास स्तार	(4) सार्थकता स्तर	
69.	it is reasonable to assume dide	population standard deviation is unknown the population is normal, we use	, if
	(1) z distribution		
	(2) t distribution with $(n-1)$ deg		
	(3) t distribution with $(n+1)$ de	grees of freedom	
	(4) χ^2 distribution with $(n-1)$	legrees of freedom	யாக
	यदि यह मानना तर्कसंगत है कि समष्टि विचलन अज्ञात है, हम प्रयोग करते हैं	प्रसामान्य है, तो p -मान पाने के लिए जब समष्टि	41.13
	(1) z ਕਂਟਜ		
	(2) t बंटन स्वातंत्र्य कोटि (n-1) के र	साथ	
	नंतर स्वातंत्र्य कोटि (n+1) के	साथ	
	 (3) t बटन स्वातंत्र्य कोटि (n-1) वे (4) χ² बंटन स्वातंत्र्य कोटि (n-1) वे 	ह साथ	
	77.	28	

70. A dice was rolled 30 times with the results shown below:

एक पासा नीचे दर्शाये परिणामों के साथ 30 बार लुढ़काया गया :

Number of spots (स्पार्म की संख्या)	1	2	3	4	5	6
Frequency (बारम्बारता)	1	4	9	9	2	5

If a chi-square goodness of fit test is used to test the hypothesis that the dice is fair at a significance level of $\alpha = 0.05$, then the value of the chi-square statistic

- (I) 11.6; reject hypothesis
- (2) 11.6; accept hypothesis
- (3) 22·1; accept hypothesis
- (4) 42:0; reject hypothesis

α = 0 · 05 के सार्थकता स्तर पर परिकल्पना की पासा सच्चा है की परीक्षा के लिए यदि कोई काई-वर्ग समंजन सुष्ठता परीक्षण प्रयुक्त होता है, तो काई-वर्ग प्रतिदर्शन का मान और पहुँचे गये

- (1) 11-6; परिकल्पना अस्वीकृत
- (2) 11-6; परिकल्पना स्वीकृत
- (3) 22·1; परिकल्पना स्वीकृत
- (4) 42:0; परिकल्पना अस्वीकृत

Consider a binomial parameter p and the test of H_0 : p = 0.7. If X represents 71. the number of successes in 15 trials and if the null hypothesis is rejected if $X \ge 13$, what is the probability of type I error for this test?

किसी द्विपद प्राचल p और $H_0: p=0.7$ की परीक्षा का विचार करें। यदि X, 15 जाचों में सफलताओं की संख्या का प्रदर्शित करता है और यदि शून्य परिकल्पना अस्वीकृत की जाती है यदि X≥13, तो इस परीक्षा के लिए प्रथम प्रकार तुटि की प्रायिकता क्या है?

- (2) 0.035
- (3) 0.050
- (4) 0.127

72. A random sample of 30 households was selected as part of a study on electricity usage and the number of kilowatt-hours (kWh) was recorded for each household in the sample for the March quarter of 2006. The average usage was found to be 375 kWh. In a very large study in the March quarter of the previous year it was found that the standard deviation of the usage was 81 kWh. Assuming the standard deviation is unchanged and that the usage is normally distributed, provide the expression for calculating a 99% confidence interval for the mean usage in the March quarter of 2006

विद्युत उपयोग पर एक अध्ययन के भाग के रूप में 30 परिवारों का एक यादृच्छिक प्रतिदर्श चयनित किया गया और 2006 के मार्च तिमाही के लिए किलोबाट-घंटों (kWh) की संख्या प्रतिदर्श में प्रत्येक परिवार के लिए अंकित की गयी। औसत उपयोग 375 kWh पाया गया। पूर्व वर्ष की मार्च तिमाही में एक बहुत बड़े अध्ययन में यह पाया गया था कि उपयोग का मानक विचलन 81 kWh था। मानक विचलन को अपरिवर्तित मानते हुए और उपयोग सामान्यतः बंटित है, तो 2006 की मार्च तिमाही में औसत इस्तेमाल के लिए 99% विश्वास अन्तराल की गणना के लिए व्यन्जक उपलब्ध कराइये

(1)
$$375 \pm 2.756 \times \frac{81}{\sqrt{30}}$$

(2)
$$375 \pm 2.575 \times \frac{9}{\sqrt{30}}$$

(3)
$$375 \pm 2 \cdot 33 \times \frac{9}{\sqrt{30}}$$

(4)
$$375 \pm 2.575 \times \frac{81}{\sqrt{30}}$$

73. What is the smallest sample size required to provide a 95% confidence interval for a mean, if it important that the interval be no longer than 1 cm? You may assume that the population is normal with variance 9 cm2

माध्य के लिए 95% विश्वास अन्तराल उपलब्ध कराने के लिए सबसे छोटा प्रतिदर्श आकार क्या है, यदि यह महत्त्वपूर्ण है कि अन्तराल 1 cm से लम्बा नहीं हो? आप कल्पना कर सकते हैं कि समष्टि प्रसरण 9 cm² के साथ प्रसामान्य है (4) 1245 (3) 95

- (1) 139
- (2) 34

- 74. Let X_1, X_2, \dots, X_n be a random sample from a density $f(x; \Theta)$, where Θ = { $\mu_1, \, \mu_2, \, \sigma^2$ } be the parameter space. Then which one of the following is not a hypothesis?
 - (1) $H_0: \mu_1 > 0$ and $H_1: \mu_2 \le 0$ (2) $H_0: \bar{x} > 0$ and $H_1: \bar{x} \le 0$
 - (3) $H_0: \sigma^2 > 0$ and $H_1: \sigma^2 \le 0$ (4) $H_0: \mu_1 = 0$ and $H_1: \mu_2 \ne 0$

माना कि X_1, X_2, \cdots, X_n घनत्व $f(x; \Theta)$ से एक यादृच्छिक प्रतिदर्श है, जहाँ $\Theta = \{\mu_1, \mu_2, \sigma^2\}$ प्राचल अन्तरिक्ष है। तब निम्नांकित में से कौन-सी एक परिकल्पना नहीं है? (1) $H_0: \mu_1 > 0$ और $H_1: \mu_2 \le 0$ (2) $H_0: \overline{x} > 0$ और $H_1: \overline{x} \le 0$

- (3) $H_0: \sigma^2 > 0$ और $H_1: \sigma^2 \le 0$ (4) $H_0: \mu_1 = 0$ और $H_1: \mu_2 \ne 0$
- 75. Let X N(0,1) under H_0 and $X \sim C(1,0)$ under H_1 , where $C(\cdot)$ denote the Cauchy variate. What will be the power of the test among the following?

माना कि $X\sim N$ (0,1) H_0 के अन्तर्गत और $X\sim C$ (1,0) H_1 के अन्तर्गत, जहाँ C (-) कों शी चर विनिर्दिष्ट करता है। निम्नांकित में से परीक्षण की शक्ति क्या होगी?

- (1) $1-1/\pi \tan^{-1}(z_{\alpha}/2)$
- (2) $2/\pi \tan^{-1}(z_n/2)$
- (3) $1-2/\pi \tan^{-1}(z_{\alpha}/2)$
- (4) $1 \tan^{-1}(z_{x}/2)$
- A chi-square test of the relationship between personal perception of emotional 76. health and marital status led to rejection of the null hypothesis, indicating that there is a relationship between these two variables. One conclusion that can be drawn is
 - (1) marriage leads to better emotional health
 - (2) better emotional health leads to marriage
 - (3) the more emotionally healthy someone is, the more likely of his being
 - (4) there are likely to be confounding variables related to both emotional health

भावात्मक स्वस्थ की व्यक्तिगत धारणा और वैवाहिक स्थिति के मध्य सम्बन्ध के लिए एक काई-वर्ग परीक्षा ने शून्य परिकल्पना की अस्वीकृति, यह निर्दिष्ट करते हुए कि इन दो चरों के मध्य एक सम्बन्ध है, को अग्रसित किया। एक निष्कर्ष जो निकाला जा सकता है, वह है

- विवाह बेहतर भावात्मक स्वस्थ को अग्रसित करता है
- (2) बेहतर भावात्मक सम्बन्ध विवाह को अग्रसित करता है
- (3) किसी का अधिक भावात्मक स्वस्थ है, तो उसका विवाहित होना अधिक संभाव्य है
- (4) भावात्मक स्वस्थ और वैवाहिक स्थिति दोनों से जुड़े भौचक चरों का होना संभाव्य है
- 77. The diameter of ball bearings is known to be normally distributed with unknown mean and variance. A random sample of size 25 gave mean 2.5 cm. The 95% confidence interval had length 4 cm. Then
 - (1) the sample variance is 26.03
- (2) the sample variance is 23.47
- (3) the population variance is 23.47 (4) the sample variance is 4.86 बॉल बीयरिंग का व्यास अज्ञात माध्य और प्रसरण के साथ प्रसामान्यतः बंटित होना ज्ञात है। आकार 25 के एक यादृच्छिक प्रतिदर्श ने माध्य 2·5 cm दिया। 95% विश्वास अन्तराल की लम्बाई 4 cm थी। तब
- प्रतिदर्श प्रसरण 26-03 है
- (2) प्रतिदर्श प्रसरण 23-47 है
- (3) जनसंख्या प्रसरण 23:47 है
- (4) प्रतिदर्श प्रसरण 4.86 है
- 78. We wish to test if a new feed increases the mean weight gain compared to an old feed. At the conclusion of the experiment it was found that the new feed gave a 10 kg more gain than the old feed. A two-sample t-test with the proper one-sided alternative was done and the resulting p-value was 082. This means
 - (1) there is an 8-2% chance the null hypothesis is true
 - (2) there was only an 8.2% chance of observing an increase greater than 10 kg (assuming the null hypothesis was false)
 - (3) there was only a 8.2% chance of observing an increase greater than 10 kg (assuming the null hypothesis was true)
 - (4) there is an 8.2% chance the alternate hypothesis is true

हम परीक्षण करना चाहते हैं यदि एक नया भोजन एक पुराने भोजन की तुलना में माध्य भार वृद्धि को बढ़ाता है। प्रयोग के निष्कर्ष पर यह पाया गया कि नये भोजन ने पुराने भोजन से 10 kg अधिक लाभ दिया। समुचित एकांगी विकल्प के साथ एक दो-प्रतिदर्श t-परीक्षण किया गया और परिणामी p-मान ·082 था। इसका अर्थ है

- शून्य परिकल्पना सही है की संभावना 8:2% है
- (2) 10 kg से अधिक वृद्धि प्रेक्षित करने की संभावना केवल 8·2% थी (शून्य परिकल्पना गलत
- (3) 10 kg से अधिक वृद्धि प्रेक्षित करने की संभावना केवल 8·2% थी (शून्य परिकल्पना सही थी
- (4) वैकल्पिक परिकल्पना सही है की संभावना 8:2% है
- 79. A test for independence is applied to a contingency table with 4 rows and 4 columns. The degrees of freedom for this chi-square test must equal to 4 पंक्तियों और 4 स्तम्भों वाले आनुषांगिक सारणी पर स्वतंत्रता के लिए एक परीक्षण प्रयुक्त किया जाता है। इस काई-वर्ग परीक्षा के लिए स्वातंत्र्य कोटि अनिवार्यतः
 - (1) 16 (2) 15 (3) 8 (4) 9 के बराबर है।
- To compare the average amount of time that Canadians and Americans spend 80. commuting, a researcher collects a sample of 50 Canadians and 60 Americans. The Canadians spend an average of 4-6 hours a week commuting, with standard deviation 2.9 hours. The mean and standard deviation for the sample of Americans is 5.2 hours and 1.3 hours, respectively. The standard error of the difference of sample means is

कनेडियन और अमेरिकी द्वारा नियमित आने जाने में व्यतीत किये गये औसत समय की तुलना करने के लिए एक शोधकर्ता ने 50 कनेडियन और 60 अमेरिकी का एक प्रतिदर्श संग्रहित करता है। कनेडियन एक सप्ताह में औसतन 4·6 घंटे मानक विचलन 2·9 घंटे के साथ व्यतीत करता है। अमेरिकी के प्रतिदर्श के लिए माध्य और मानक विचलत क्रमण 5-2 घंटे और 1-3 घंटे हैं। प्रतिदर्श

(1) 2.314 (2) 1.023 (3) 0.443 (4) 0-196 33

(186)

A coin is tossed 8 times and the total number of heads were observed. A test procedure rejects the null hypothesis that the coin is unbiased, if the number of heads is less than 2 or more than 6. Then the value of α will be

एक सिक्का 8 बार उछाला जाता है और शीर्षों की कुल संख्या देखी जाती है। एक परीक्षा प्रक्रिया शून्य परिकल्पना कि सिका अनभिनत है को अस्वीकार करती है, यदि शीर्षों की संख्या 2 से कम अथवा 6 से अधिक हो। तो α का मूल्य होगा

- (1) 17/2
- (2) 28/17 (3) 17/28
- (4) 17/28
- Suppose that we sample without replacement n items from a population of Nitems of which D are defective. Let X denotes the number of defective items in 82. the sample. Then

ample. Then
$$P_D(X=x) = p_D(x) = \frac{\binom{D}{x}\binom{N-D}{n-x}}{\binom{N}{n}}, \text{ for } x = 0 \lor (n-N+D), \dots, D \land n$$

This family of distributions has MLR in T(X) = X since

- (1) $\frac{p_{D+1}(x)}{p_D(x)} = \frac{D+1}{N-D} \frac{N-D-n+x}{D+1-x}$ is increasing in x
- (2) $\frac{p_{D+1}(x)}{p_D(x)} = \frac{D+1}{N-D} \frac{N+D+n+x}{D+1+x}$ is increasing in x
- (3) $\frac{p_{D+1}(x)}{p_{D+1}(x)} = \frac{D+1}{N-D} \frac{N-D-n+x}{D+1-x}$ is decreasing in x
- (4) $\frac{p_{D+1}(x)}{p_D(x)} = \frac{D+1}{N-D} \frac{N+D+n+x}{D+1+x}$ is decreasing in x

माना कि हम N वस्तुओं की समष्टि में से, जिसमें D त्रुटिपूर्ण है, n बस्तुओं का एक प्रतिदर्श पुनर्स्थापना बिना लेते हैं। माना कि X प्रतिदर्श में त्रुटिपूर्ण वस्तुओं की संख्या निर्दिष्ट करता है। तब

$$P_D(X=x)=p_D(x)=rac{inom{D}{x}inom{N-D}{n-x}}{inom{N}{n}}, ext{ for } x=0\lor(n-N+D), \cdots, D\land n$$

इसलिए बंटनों का परिवार T(X) = X में MLR है

(1)
$$\frac{p_{D+1}(x)}{p_D(x)} = \frac{D+1}{N-D} \frac{N-D-n+x}{D+1-x} x$$
 में वर्धमान है

(2)
$$\frac{p_{D+1}(x)}{p_D(x)} = \frac{D+1}{N-D} \frac{N+D+n+x}{D+1+x} x + \vec{n}$$
 वर्धमान है

(3)
$$\frac{p_{D+1}(x)}{p_D(x)} = \frac{D+1}{N-D} \frac{N-D-n+x}{D+1-x} x \vec{n}$$
 हासमान है

(4)
$$\frac{p_{D+1}(x)}{p_D(x)} = \frac{D+1}{N-D} \frac{N+D+n+x}{D+1+x} x \vec{+}$$
 हासमान है

Let X_1, X_2, \dots, X_n be a random sample of size n from $N(\mu, \sigma^2)$, where σ^2 is known. Using the method of Likelihood ratio test, what will be the critical region for the test of hypothesis, $H_0: \mu = \mu_0$ against $H_1: \mu > \mu_0$?

माना कि X_1, X_2, \cdots, X_n $N\left(\mu, \sigma^2\right)$ से n आकार का एक यादृच्छिक प्रतिदर्श है, जहाँ σ^2 ज्ञात है। संभाव्य अनुपात परीक्षण विधि प्रयुक्त करते हुए परिकल्पना $H_0: \mu = \mu_0$ के विपरीत $H_1: \mu > \mu_0$ के परीक्षण के लिए क्रान्तिक क्षेत्र क्या होगा?

(1)
$$\sqrt{n/\sigma} (\bar{x} - \mu_0) > -z_0$$

(2)
$$\alpha/\sqrt{n}(\bar{x}-\mu_0) < z_\alpha$$

(3)
$$\sqrt{n/\sigma} (\bar{x} - \mu_0) > z_\alpha$$

(4)
$$\sigma^2/n(\bar{x}-\mu_0)<-z_0$$

84. Suppose X_1, X_2, \dots, X_n are independent Poisson (λ) random variables and consider testing H_0 : $\lambda = \lambda_0$ against H_1 : $\lambda = \lambda_1$, where $\lambda_0 < \lambda_1$. Then which among the following can be taken as a rejection region (by LR-test)?

माना कि X_1, X_2, \cdots, X_n स्वतंत्र प्वासों (λ) यादृच्छिक चर हैं और $H_0: \lambda = \lambda_0$ के विपरीत $H_1:\lambda=\lambda_1$, जहाँ $\lambda_0<\lambda_1$, के परीक्षण पर विचार करें। तब निम्नांकित में से कौन एक क्रान्तिक क्षेत्र के रूप में लिया जा सकता है (LR-परीक्षण द्वारा)?

क्षेत्र के रूप म lead जा सकता है (ER के स्वाप का सकता है (ER के स्वाप म lead जा सकता है (ER के सकता है) (4)
$$\{\underline{x}: \overline{x} \ge k\}$$
 (2) $\{\underline{x}: \overline{x} \le k\}$ (3) $\{\underline{x}: \overline{x} = k\}$ (4) $\{\underline{x}: \overline{x} \ge k\}$ (5) $\{\underline{x}: \overline{x} \ge k\}$ (6) $\{\underline{x}: \overline{x} \ge k\}$ (7) $\{\underline{x}: \overline{x} \ge k\}$ (8) $\{\underline{x}: \overline{x} \ge k\}$

where k is a constant chosen to give significance level α . जहाँ k सार्थकता म्ता a देने के लिए चयनित नियतांक है।

- Consider a test $H_0: \theta = \theta_0$ for an exponential family of distributions. Then for the hypothesis Ho, which among the following will be true? 85.
 - (1) UMP-test exist always
- (2) UMP-unbiased test exists
- (4) UMP-test does not exist

(3) UMP-unbiased test not exist बंटनों के एक घातांकी परिवार के लिए H_0 : $\theta=\theta_0$ की परीक्षा पर विचार करें। तब परिकल्पना H_0 के लिए निम्नांकित में से कौन सही होगा?

- UMP-परीक्षण का सदैव अस्तित्व है
- (2) UMP-अनिभनत परीक्षण का अस्तित्व है
- (3) UMP-अनिभनत परीक्षण का अस्तित्व है
- (4) UMP-परीक्षण का अस्तित्व नहीं है
- 86. A test φ is unbiased if and only if its power function $\beta_{\varphi}(\theta)$ satisfies
 - (i) $\beta_{\varphi}(\theta) \le \alpha$ for all θ and $\beta_{\varphi}(\theta) \ge \alpha$ for $\theta \in \Theta_1$
 - (2) $\beta_{\varphi}(\theta) \ge \alpha$ for all θ and $\beta_{\varphi}(\theta) \le \alpha$ for $\theta \in \Theta_1$
 - (3) $\beta_{\varphi}(\theta) \le \alpha$ for all $\theta \in \Theta_0$ and $\beta_{\varphi}(\theta) \ge \alpha$ for $\theta \in \Theta_1$
 - (4) $\beta_{\varphi}(\theta) \le \alpha$ for all $\theta \in \Theta_1$ and $\beta_{\varphi}(\theta) < \alpha$ for all θ

एक परीक्षण ϕ अनिभनत है यदि और केवल यदि इसका शक्ति फलन $\beta_{\phi}(\theta)$ संतुष्ट करता है

- (1) $β_{\varphi}(\theta) \le α$ सभी θ के लिए और $β_{\varphi}(\theta) \ge α$, $\theta \in \Theta_1$ के लिए
- (2) $β_{\varphi}(\theta) \ge α$ सभी θ के लिए और $β_{\varphi}(\theta) \le α$, $\theta \in \Theta_1$ के लिए
- (3) $\beta_{\varphi}(\theta) \le \alpha$ सभी $\theta \in \Theta_0$ के लिए और $\beta_{\varphi}(\theta) \ge \alpha$, $\theta \in \Theta_1$ के लिए
- (4) $β_{\varphi}(\theta) \le α$ सभी $\theta \in \Theta_1$ के लिए और $β_{\varphi}(\theta) < α$, θ के लिए
- 87. For a Likelihood ratio test, let us define

$$\lambda(x) = \frac{\sup f(x|\theta)}{\sup f(x|\theta)}, \ \Theta = \Theta_0 \cup \Theta_1$$

Then assuming some regularity conditions, which statement about the quantity $k = -2 \log \lambda(x)$ is true?

- k follows chi-square distribution with d.f. equals to the number of independent parameters in Θ₀
- (2) k follows chi-square distribution with d.f. equals to the difference between the number of independent parameters in Θ and in Θ₀
- (3) k follows F distribution with n₁ and n₂ degrees of freedom, where n₁ and n₂ are the number of parameters in Θ₀ and Θ respectively
- (4) k follows chi-square distribution with d.f. equals to the number of

एक संभावना अनुपात परीक्षण के लिए हमें

$$\lambda(x) = \frac{\sup_{\theta \in \Theta_0} f(x|\theta)}{\sup_{\theta \in \Theta} f(x|\theta)}, \ \Theta = \Theta_0 \cup \Theta_1$$

परिभाषित करना अनुमन्य करें। तब कुछ नियमितता दशा को मानते हुए मात्रा $k=-2\log\lambda(x)$ के बारे में कौन-सा कथन सही है?

- (1) k, Θ₀ में स्वतंत्र प्राचलों की संख्या के बराबर d.f. के साथ काई-वर्ग बंटन अनुगमन करता है
- (2) ⊙ और ⊙₀ में स्वतंत्र प्राचलों की संख्या के अन्तर के बराबर d.f. के साथ k काई-वर्ग बंटन का अनुगमन करता है
- (3) k, n_1 और n_2 स्वातंत्र्य कोटि के साथ F बंटन का अनुगमन करता है जहाँ n_1 और n_2 क्रमशः 🛛 अौर 🔗 में प्राचलों की संख्या
- (4) k. Θ में स्वतंत्र प्राचलों की संख्या के d.f. समान के साथ काई-वर्ग बंटन का अनुगमन करता है
- **88.** Suppose X is a random variable with density f(x). To test $H_0: f(x) = 1; 0 < x < 1$ vs. H_1 : f(x) = 2x; 0 < x < 1, the UMP test at level $\alpha = 0.05$
 - (1) does not exist
 - (2) rejects H₀ if x > 0.95
 - (3) rejects H₀ if x > 0.05
 - (4) rejects H_0 for $x < c_1$ or $x > c_2$, where c_1 and c_2 have to be determined मानलें कि X घनत्व f(x) के साथ एक यादृच्छिक चर है। $H_0: f(x)=1;\ 0< x<1$ बनाम $H_1: f(x) = 2x$; 0 < x < 1 के UMP-परीक्षण के लिए स्तर $\alpha = 0.05$ पर परीक्षण
 - का अस्तित्व नहीं है
 - (2) यदि x > 0.95, तो H_o को अस्वीकार करता है
 - (3) यदि x>0.05, तो H_0 को अस्वीकार करता है
 - (4) $x < c_1$ अथवा $x > c_2$ के लिए H_0 अस्वीकार करता है, जहाँ c_1 और c_2 को नियत करना है

89. In a testing of hypothesis problem, the density of a sufficient statistic T is एक परिकल्पना समस्या के परीक्षण में एक पर्याप्त प्रतिदर्शन T का घनत्व है

$$f(t|\theta) = \frac{\theta}{t^{\theta+1}}, \ t > 1, \theta > 0$$

The hypothesis $H_0: \theta = 2$ against $H_1: \theta = 4$, is to be tested and $T = 2 \cdot 0$ is observed. Then the p-value of the most powerful test is

परिकल्पना $H_0: \theta=2$ के विपरीत $H_1: \theta=4$ का परीक्षण करना है और T=2 0 प्रेक्षित है। तब सबसे शक्तिशाली परीक्षण का p-मान है

- (1) 0.05 (2) 0.4 (3) 0.25 (4) 0.6
- 90. You conduct a hypothesis test and you observe values for the sample mean and sample standard deviation when n=25 that do not lead to the rejection of H_0 . You calculate a p-value of 0.0667. What will happen to the p-value if you observe the same sample mean and standard deviation for a sample > 25?
 - (1) Increase

(2) Decrease

(3) Stay the same

(4) May either increase or decrease

आप परिकल्पना परीक्षण संचालित करते हैं और आप प्रतिदर्श माध्य और प्रतिदर्श मानक विचलन के लिए मानों को प्रेक्षित करते हैं, जब n=25 जो H_0 की अस्वीकृति की ओर अग्रगमित नहीं है। आप p-मान 0·0667 परिगणित करते हैं। p-मान का क्या होगा यदि आप वही प्रतिदर्श माध्य और मानक विचलन > 25 प्रतिदर्श के लिए प्रेक्षित करें?

(1) qG

(2) हास

(3) वही स्थिर

(4) या तो वृद्धि या हास हो सकता है

91.	difference	betwen	the probabili	a sample of size ty of a unit include from the population	1?	
	probability	or sere		- ६ च्या ग्या। एक	दकाई के प्रतिदर्श में	दुने जाने की
2	10 आकार जयिकता औ	के समष्टि र समष्टि	से 3 आकार का से एक इकाई के	प्रतिदर्श चुना गया। एक चुने जाने की प्रायिकता व	हा अन्तर क्या है?	
	MILANUI ON			3	(4) 1	
	(1) $\frac{1}{5}$	*	(2) $\frac{1}{10}$	(3) $\frac{3}{10}$	3	
				equare equal to		rd error of

A population of size 50 has mean square equal to 12.5: the standard error of sample mean of size 5 using SRSWOR will be 92. एक 50 आकार के समष्टि में माध्य वर्ग का मान 12-5 है। 5 आकार के प्रतिदर्श माध्य की SRSWOR उपयोग करते हुए मानक त्रुटि होगी

- (1) 7.5
- (2) 4.5
- (3) 3.75
- (4) 1.5

93. From a population of size 50, a sample of size 8 is drawn, then the ratio of $V(\bar{y})_{SRSWOR}$ and $V(\bar{y})_{SRSWR}$ is

50 आकार के समष्टि से 8 आकार का प्रतिदर्श प्राप्त किया गया, तो V(y)_{SRSWOR} और $V(ar{y})_{
m SRSWR}$ का अनुपात होगा (3) $\frac{6}{50}$ (4) $\frac{7}{8}$

- (1) $\frac{3}{7}$
- (2) $\frac{6}{7}$

If the population mean of all the strata are equal, then $V(\overline{y})_{SRSWOR}$ will be 94.

- greater than V(\$\overline{y}_{st}\$)_{prop}
- (2) equal to the V (\$\overline{y}_{st} \)_prop
- (3) less than V (y st) prop
- (4) equal to V (y st) Ner

where $V(\bar{y}_{st})_{prop}$ and $V(\bar{y}_{st})_{Ney}$ refers to the variance of stratified sample mean (\bar{y}_{st}) under proportional and Neyman allocation.

यदि प्रत्येक स्तर के लिए समष्टि माध्य का मान बराबर हो, तो $V(ar{y})_{ ext{SRSWOR}}$ का मान

 $(1) \ V(\bar{y}_{\mathsf{st}})_{\mathsf{prop}}$ से बड़ा

(2) $V(\overline{y}_{\rm st})_{\rm prop}$ के बराबर

(3) $V(\bar{y}_{\rm st})_{\rm prop}$ 社 कम

(4) $V(\bar{y}_{st})_{Ney}$ के बराबर

जहाँ $V(\bar{y}_{\rm st})_{\rm prop}$ और $V(\bar{y}_{\rm st})_{\rm Ney}$ स्तरित प्रतिदर्श माध्य $(\bar{y}_{\rm st})$ के आनुपातिक एवं नेमन् बँटवारा

- 95. If the population mean square (S_i^2) is same for all strata, then we have यदि समष्टि माध्य वर्ग (S_i^2) प्रत्येक स्तर के लिए बराबर हो, तो (1) $V(\bar{y}_{st})_{prop} = V(\bar{y}_{st})_{Ney}$ (2) $V(\bar{y}_{st})_{Ney} < V(\bar{y}_{st})_{prop}$

(3) $V(\bar{y}_{st})_{prop} = V(\bar{y}_{st})_{SRSWOR}$ (4) $V(\bar{y}_{st})_{Ney} > V(\bar{y}_{st})_{prop}$ where $V(\bar{y})_{\text{SRSWOR}}, V(\bar{y}_{\text{st}})_{\text{prop}}$ and $V(\bar{y}_{\text{st}})_{\text{Ney}}$ denote the variance of sample mean under SRSWOR scheme of sampling, variance of stratified sample mean (\bar{y}_{st}) under proportional and Neyman allocation respectively.

जहाँ $V(\bar{y})_{\rm SRSWOR}, V(\bar{y}_{\rm st})_{\rm prop}$ और $V(\bar{y}_{\rm st})_{\rm Ney}$ ्क्रमशः SRSWOR प्रतिचयन विधि के अन्तर्गत प्रतिदर्श माध्य के प्रसरण, स्तरित प्रतिदर्श माध्य के आनुपातिक एवं नेमन् बँटवारे के अन्तर्गत प्रसरण को निरूपत करता है।

96. If the population mean and population mean square values are same for each

यदि समष्टि माध्य और समष्टि माध्य वर्ग का मान प्रत्येक स्तर में बराबर हो, तो

- (1) $V(\overline{y}_{st})_{prop} > V(\overline{y}_{st})_{Ney}$

(3) $V(\bar{y}_{st})_{prop} > V(\bar{y}_{st})_{SRSWOR}$ (4) $V(\bar{y}_{st})_{SRSWOR} = V(\bar{y}_{st})_{prop} = V(\bar{y}_{st})_{Ney}$ where $V(\bar{y})_{SRSWOR}$, $V(\bar{y}_{st})_{prop}$ and $V(\bar{y}_{st})_{Ney}$ represent the variance of sample mean under SRSWOR scheme of sampling, variance of stratified sample mean (\widetilde{y}_{st}) under proportional and Neyman allocation respectively.

जहाँ $V(\bar{y})_{\text{SRSWOR}}, V(\bar{y}_{\text{st}})_{\text{prop}}$ और $V(\bar{y}_{\text{st}})_{\text{Ney}}$ क्रमशः SRSWOR प्रतिचयन विधि के अन्तर्गत प्रतिदर्श माध्य के प्रसरण, स्तरित प्रतिदर्श माध्य के आनुपातिक एवं नेमन् बँटवारे के अन्तर्गत प्रसरण को निरूपत करता है।

97. The non-sampling error occurs in

(1) sampling

(186)

Lat mount	0.000		
(2) samp	oling and also in complete	enumeration	
	olete enumeration only		
V-7000	e in sampling		
	त्रुटि घटित होती है	(2) प्रतिचयन और सम	यूर्णगणना में
(1) प्रतिचः(3) केवल	र स्राप्यर्ण गणना में	(4) प्रतिचयन में ज्याद	7
98. Ratio a	nd regression estimators	A CONTRACTOR OF THE PROPERTY O	
	by x, \bar{y} and \bar{x} represent the mean of y and x respectively.	(3) $bux = \frac{2}{3}$	(4) Dyx
where sample जहाँ by	byx, \bar{y} and \bar{x} represent the mean of y and x respectively, \bar{y} और \bar{x} समाश्रयण गुणक	e estimate of $x = 0$ tively. y का x पर, प्रतिदर्श मा	व्य y और x चर को क्रमश.
निरूपित	करता है। $5 < \frac{C_x}{C_y} < 2$, the ratio estimates $\frac{C_x}{C_y} < 2$	pator of \vec{Y} will be me	ore efficient than sample
99. For 1-	$5 < \frac{C_x}{C_y} < 2$, the ratio estimates $\frac{C_x}{C_y} < 2$, then the value of correlations	ation coefficient (p) w	ill be
1.5<	$\frac{C_{\times}}{C}$ के लिए Y का आनु	पातिक आकलक प्रतिदर्श	माध्य से ज्यादा दक्ष हागा, ता
सहसम्ब	क्रथ गुणांक (ρ) का मान हागा	(3) $\rho = 0.50$	(4) $\rho > 0.75$
(1) P whe	$c_{x} = C_{x}$ and C_{y} denote the $c_{x} = C_{x}$ और C_{y} , x और y जर के	f warration	n of x and y. है।
जहाँ	Cx our an	42	

42

- 100. If C_x and C_y denote the coefficient of variation of x and y, then the relative bias of product estimator of \overline{Y} will be
 - (1) less than $C_x C_y$

(2) greater than CxCu

(3) equal to Cx

(4) equal to C,

यदि C_x और C_y , x और y के विचलन गुणांक को निरूपित करते हैं, तो $ar{Y}$ के गुणक आकलक का सापेक्षभिनत् का मान होगा

- (1) $C_x C_y$ से कम (2) $C_x C_y$ से ज्यादा (3) C_x के बराबर (4) C_y के बराबर
- 101. In a population of size 50, a systematic sample of size 5 is drawn. If a unit selected in the sample is 17, then the other units of the sample will be एक 50 आकार के समष्टि से 5 आकार का क्रमबद्ध प्रतिदर्श प्राप्त किया गया। यदि प्रतिदर्श में एक इकाई 17 चुना गया, तो प्रतिदर्श में अन्य इकाइयाँ होंगी
 - (1) (7, 15, 25, 35)

(2) (7, 27, 37, 47)

(3) (7, 20, 18, 27)

- (4) (17, 18, 25, 27)
- 102. If s^2 and s_0^2 denote sample mean square and sample variance and S^2 and σ^2 denote population mean square and variance, then we have
 - in case of SRSWOR E(s²) = σ²
 - (2) in case of SRSWR $E(s_0^2) = \sigma^2$
 - (3) in case of SRSWOR $E(s^2) = S^2$, $E(s_0^2) = S^2$
 - (4) in case of SRSWOR $E(s^2) = S^2$ and in case of SRSWR $E(s^2) = \sigma^2$

यदि s^2 और s_0^2 प्रतिदर्श माध्य वर्ग और प्रतिदर्श प्रसरण को निरूपित करता है और S^2 और σ^2 समष्टि माध्य वर्ग और समष्टि प्रसरण को निरूपित करता है, तो

- SRSWOR की स्थिति में E(s²) = σ²
- (2) SRSWR की स्थिति में E(s₀²) = σ²
- (3) SRSWOR की स्थिति में $E(s^2) = S^2$, $E(s_0^2) = S^2$
- (4) SRSWOR की स्थिति में $E(s^2) = S^2$ और SRSWR की स्थिति में $E(s^2) = \sigma^2$
- If T is an estimator of parameter θ , then 103. यदि T प्राचल θ का आकलक है, तो
 - MSE(T) = V(T)

- (2) V(T) = MSE(T) + Bias(T)
- (3) $MSE(T) = V(T) + (Bias(T))^2$
- (4) $V(T) = MSE(T) + (Bias(T))^2$
- From a population of size 50, a sample of size 10 is selected. The values of $C_y = C_x = 0.5$, $\rho_{yx} = 0.5$, then MSE (\bar{y}_R) will be given by 104. (4) zero
 - (1) 0·5 Ȳ²
- (2) 0-75 ¥2
- (3) 5-2 Y2

where \overline{y}_R is ratio estimator of population mean (\overline{Y}).

50 आकार के समिष्ट से 10 आकार का प्रतिदर्श चुना गया। $C_y = C_x = 0.5$, $\rho_{yx} = 0.5$, तो $MSE(\bar{y}_R)$ का मान होगा

- (1) 0.5 \$\vec{Y}^2\$
- (2) $0.75\,\overline{Y}^2$ (3) $5.2\,\overline{Y}^2$
- (4) शून्य

जहाँ \widetilde{y}_R समष्टि माध्य (\widetilde{Y}) का आनुपातिक आकलक है।

105. From a population of size 50, a sample of size 10 is drawn. The MSE of ratio estimator \overline{y}_R of \overline{Y} is calculated for $C_y = 0.25$, $C_x = 0.50$ which comes to be $0.015 \overline{Y}^2$. The value of the correlation coefficient ρ_{yx} will be

50 आकार के समष्टि से 10 आकार का प्रतिदर्श चुना गया। $ar{Y}$ के आनुपातिक आकलक $ar{y}_R$ के माध्य वर्ग त्रुटि का मान $0.015\, \overline{Y}^2$ है, तो सहसम्बन्ध गुणांक ho_{yx} का मान होगा

- (1) 0.5
- (2) 0.75
- (3) 0.25
- (4) 0.15

106. If product estimator of population mean is more efficient than sample mean and $C_x = 0.45$, $C_y = 0.50$, then the value of ρ_{yx} , the correlation coefficient between y

यदि समष्टि माध्य का गुणक आकलक, प्रतिदर्श माध्य के सापेक्ष ज्यादा दक्ष हो और $C_x = 0.45$, $C_y=0.50$ हो, तो सहसम्बन्ध गुणांक ρ_{yx} , (y) और x के बीच में) का मान होगा (1) $p_{yx} > \frac{1}{2}$

- (2) $\rho_{yx} < -0.50$
- (3) $-0.7 < \rho_{yx} < -0.08$
- (4) pyx < -0.45

107. Cluster sampling is used

- (1) to reduce the cost
- (2) to reduce sample size
- (3) when population units are in groups
- (4) when variance is fixed

गुच्छ प्रतिचयन प्रयुक्त होता है

(1) खर्च कम करने के लिए

- (2) प्रतिदर्श आकार कम करने के लिए
- (3) जब समष्टि की इकाइयाँ समूह में हों
- (4) जब प्रसरण निश्चित हों

(186)

108. If the 3 stratum sizes are in the ratio 3:4:5 and a sample of size 120 is to be drawn by using proportional allocation, then the units to be selected from first, second and third stratum will be

यदि 3 स्तरों के आकार क्रमशः 3:4:5 के अनुपात में हो और आनुपातिक बँटवारे के अन्तर्गत प्रतिदर्श 120 आकार का प्राप्त करने में प्रथम, द्वितीय और तृतीय स्तर से चुने गये इकाइयों का संख्या होगी

- (4) 30, 60, 30 (3) 40, 30, 50 (1) 30, 40, 50 (2) 30, 50, 40
- The difference between random sampling and simple random sampling is 109.
 - (1) probability of selecting a unit is not same in both cases
 - (2) method of selection is different
 - (3) probability of selecting a unit is different for all units in case of random
 - (4) the first method is simple while second method is complicated यादृच्छिक प्रतिचयन और सरल यादृच्छिक प्रतिचयन में अन्तर है
 - (1) दोनों स्थितियों में एक इकाई के चुनने की प्रायिकता समान नहीं है
 - (2) चयन विधि में अन्तर है
 - (3) यादन्छिक प्रतिचयन में किसी इकाई के चुने जाने की प्रायिकता भिन्न-भिन्न है
 - (4) पहली विधि आसान है और दूसरी विधि कठिन है
 - Measurement error is a part of 110.
 - (1) sampling error
 - (2) non-sampling error
 - (3) sampling and non-sampling error
 - (4) None of these

(P.T.O.)

	मापन त्रुटि भाग है			
	(1) प्रतिचयन त्रुटि		(2) अप्रतिचयन	वृटिका
	(3) प्रतिचयन और	अप्रतिचयन त्रुटि का	(4) इनमें से कोइ	51 (A.S.) Al
111.	oquare is 18.	then the mean se	quare between the	sification with three classes
	तीन श्रेणी तथा पत्रो	2 Ante =		ciasses is किरण समस्या के प्रसरण विश्लेषण रेणियों के बीच में माध्य वर्ग का
	(1) 2	(2) 3	(3) 4	(4) 5
(1) (1) (1) (3)	मरण विश्लेषण विधि मरण विश्लेषण विधि 1) आर॰ ए॰ फिशर hich one of the Randomization Test of signific निलिखित में से कौन	(2) Irving Fish को किसने विकसित (2) इरविंग फिशर following is not cance अभिकल्पना क प्रयोग	किया था? (3) नेमान् a basic principle of (2) Local contro (4) Replication का मल सिद्धान उन्हें है	(4) C. R. Rao (4) सी॰ आर॰ राव f design of experiment?
(1)	यादृच्छिक्रण	(2) स्थानीय निवंत्रण	(3) सार्थकता परीक्षण	(4) पुनरावृत्ति
186)		47		*.0

114. In which of the following pairs of basic designs, all the three basic principles are

निम्नलिखित मूल अभिकल्पनाओं के युगलों में से किसमें, सभी तीनों मूल सिद्धान्तों का प्रयोग होता 君?

(1) CRD, LSD

(2) CRD, RBD

(3) RBD, LSD

(4) CRD, Grocco-LSD

The following table gives a layout of 4 treatments (t_1, t_2, t_3, t_4) each replicated three times. The numbers in brackets are social number of the experimental 115.

निम्नलिखित सारिणी में 4 ट्रीटमेन्टों $(t_1,\,t_2,\,t_3,\,t_4)$ जिसको प्रत्येक की पुनरावृत्ति तीन है का ले-आउट दिया गया है कोष्ठक में प्रायोगिक इकाई का सीरियल (क्रम) संख्या दिया गया है :

(1)	(2)	(3)	(4)
t ₂	t ₂	t ₃	t ₁
(5)	(6)	(7)	(8)
t ₄	t ₁	t ₄	t ₂
(9)	(10)	(11)	(12)
t ₃	t ₁	t ₄	t ₃

This layout correspond to which one of the following designs?

ले-आउट निम्नलिखित अभिकल्पनाओं में से किससे सम्बन्धित है?

- (1) RBD
- (2) CRD
- (3) Grocco-LSD
- (4) LSD

Technique used for solving the problem of missing observations was first given 116. (4) Das by

- (1) Fisher
- (2) Neyman
- (3) Yates

रिक्त आँकड़ों	की समस्या का समाधा		
(1) फिशर	(2) नेमन्		योग सर्वप्रथम किसने दिया?
117. What are th		(3) ऐट्स	(4) दास
m×m लैटिन	o degrees of freedo वर्ग अभिकल्पना में p	m for the F-ratio in	(4) दास m×m Latin square design?
(1) $\{m, \{m^2\}\}$	-1))	उ समाध्य का	।टियाँ क्या है?
(3) $\{m, (m^2, \dots)\}$	-3m +2)}	(2) {(m-1)	
118. When the de		(4) $\{(m-1)\}$	(m^2-3m+2)
design is 6, t एक लैटिन वर्ग अ	grees of freedom hen the order of भिकल्पना में उरी क	for the error sum the design is	of square in a Latin square
आर्डर है (1) 5×5	न द्वाट वग	याग का स्वातंत्र्य कोटि	जब 6 है, तब उस अभिकल्पना का
	(2) 4×4	(3) 22	
design with 5	egrees of freedom treatments and 30	for the test staties	
पाँच ट्रीटमेंटों तथा स्वातंत्र्य कोटियाँ क्या	30 प्लॉटों के एक व	plots? गादृच्छिक खण्ड अभिकृत	ic F in a randomized block यना में परीक्षण प्रतिदर्शन F को
(1) { 4, 24 }	(2) { 5, 30 }		नना म परीक्षण प्रतिदर्शज F को
120. How many source		(3) { 4, 20 }	(4) { 5, 20 } 5×6 Latin square design?
कितने विचरण के स्रोत	ों को 6×6 लैटिन वर्ग	be eliminated in a ह अभिकल्पना से समाप्त 131-2	×6 Latin square deci
(1) 5	(2) 2		किया जा सकता है?
186)		1-7 3	(4) 6
	49	9	
			(P.T.O.)

(186)

121	In a 2*-factorial experiment		
Laz		 का प्रस्त्य प्रभाव देता है 	
	एक 2 ² -बहुउपादानीय प्रयोग में कारक	A and god a	
	has 3 -algorithms 2	(a, 1, (a, 1), (b-1))	
		$(2) \frac{1}{2} (a^{-1}) (a^{-1})$	
	(1) $\frac{1}{2}(a-1)(b+1)$		
		(4) $\frac{1}{2}(a+1)(b-1)$	
	(3) $\frac{1}{2}(a+1)(b+1)$		
	(3) ½ (a 1 - 1) -	feature A	and B
		effect between two lactors in	CALL TO THE PARTY OF THE PARTY
	a	he interaction enece	
122.	In a 22-factorial experiment,	he interaction effect between two factors A	5 -
12.00	is given by	कससे उ	ात होता
	18 Bren and	• चणा p के बीच अन्तरजाताय प्रमाय गाँउ	
	े — प्राप्तानीय प्रयोग में दो क	गरक A तथा B के बीच अन्तरजातीय प्रभाव किससे ३	
	एक 2बहुज्यादानाय		
	A 2		
	₹?	(2) $\frac{1}{2}(a-1)(b-1)$	
		(2) 2 (4 -7)	
	(1) $\frac{1}{2}(a-1)(b+1)$	(4) $\frac{1}{2}(a+1)(b-1)$	
	(-) 2	$(4) \frac{1}{2} (a+1) (b-1)$	
	(3) $\frac{1}{2}(a+1)(b+1)$	M/6.#67	
	$(3) \frac{1}{2} (\alpha + 1) (3)$	conducted in 6 randomized block. The de used for testing the significance of the main	grees of
		in 6 randomized block. The	effect B
	. 1eriment C	onducted in o reasignificance of the main	Checo
10	In 22-factorial experiment	sed for testing the significant	
1.23	foredom of the test statistic	1300	
	Irecuon o	conducted in 6 randomized block. The decision of the main used for testing the significance of the main	परीक्षण के
	is given by	च से किया गया है। B की सायकता प	76000
	- १ मगोग 6 या	दृच्छिक खण्ड में किया गया है। B की सार्थकता के वातंत्र्य कोटि है	
	एक 2 ² -बहुउपादानीय प्रयोग ठ पा लिये प्रयुक्त परीक्षण प्रतिदर्शज की स	के स्टेरि है	
	एक 2 किल्ला प्रतिदर्शन की स	वातव्य कार्य क	
	लिये प्रयुक्त पराकाण जाता	(4) 1, 15	
	(0) 1 1	6 (3) 2, 15 (4) 1, 15	
	(1) 1, 14 (2) 1, 1	0	
	(1) 1, 1,	f error sum of square in a 23-factorial e ized blocks is given by	xperiment
		of square in a 2-lactorium	2016-2016-1-00-0-00-0-0-0-0-0-0-0-0-0-0-0-0-0-
	s smedom 0	f error sum of square	
	24. The degrees of freedom of conducted in five random	and blocks is given by	· - A
1	24. The degreed in five random	किया कर जा हो जो उसके त्रिट	वग याग का
	conducted	न जिया गया हो, आ	
	ज्यानातीय प्रयोग जो	ized blocks is given by 5 यादृच्छिक खण्डों में किया गया हो, तो उसके त्रुटि	
	गक् 23-बहुउपादानान		
	ं असे का मान है		
	एक 2°-बहुउत्तर स्वातंत्र्य कोटि का मान है	(3) 32 (4) 34	
	12/ 28	(3) 32	
	20	t.	
	(1) 39		
	1.00		

50

121. In a 22-factorial experiment the main effect of factor A is given by

125.	In 23-factorial means will be	experiment, how	many mutually or	thogonal contrast of treatment
(1) 129. Wh	(1) 7 Which one of निम्नलिखित में से व (1) ASFR Which one of the (1) Census 3) Population F केम्नलिखित में से की (1) जनगणना जनसंख्या पंजिका Iman Development विकास आख्या (1) WHO	शिय प्रयोग में ट्रीटमेंट (2) 8 the following is in the following is a biologic (2) UNDP ving is a biologic (2) UNDP	माध्य के कितने पारस्पति (3) 9 not a measure of f का मापक नहीं है? (3) CPR most exhaustive so (2) Demogram (4) Vital Region कड़ों का सम्पूर्ण स्रोत है (2) जनांकिकी सर्वे	क लाम्बिक विषयांस होंगे? (4) 6 fertility? (4) TFR urce of population data? phie eurvey stration System ? क्रिण किरण प्रणाली
	Age at Gauna		(2) Fecundability	7
186)		51	(4) Use of contra	Ception
				(P. T.O.)

निम्नलिखित में से कौन प्रजनन का एक जैविक कारक है?

(1) विवाह के समय आयु

(2) फिकन्डाबीलीटी

(3) गौना के समय आयु

(4) गर्भनिरोधक का उपयोग

130. For calculating Total Fertility Rate (TFR), the denominator is

- (1) population in 15-49 years age-group
- (2) married women in 15-49 years age-group
- (3) total women in 15-49 years age-group
- (4) all ever married women irrespective of their age

कुल प्रजनन दर की गणना के लिए भाजक है

- 15-49 वर्ष के आयु वर्ग की जनसंख्या
- (2) 15-49 वर्ष के आयु वर्ग की शादीशुदा औरतें (महिलाएँ)
- (3) 15-49 वर्ष के आयु वर्ग की कुल महिलाएँ
- (4) किसी भी आयु वर्ग की शादीशुदा महिलाएँ

131. The trial control limits for σ -chart with \overline{S} as mean standard deviation and usual constant factors are

- (1) UCL = $\overline{S} + B_1 \overline{S}$, CL = \overline{S} and LCL = $\overline{S} B_4 \overline{S}$
- (2) UCL = $B_4\overline{S}$, CL = B_4 and LCL = $B_3\overline{S}$
- (3) UCL = $B_4\overline{S}$, CL = \overline{S} and LCL = $B_3\overline{S}$
- (4) UCL = $B_3\overline{S}$, CL = \overline{S} and LCL = $B_4\overline{S}$

S जो कि माध्य मानक विचलन है तथा प्रचलित नियतांक घटकों के साथ σ-चार्ट के लिए परीक्षण

- (1) UCL = $\overline{S} + B_1 \overline{S}$, CL = \overline{S} तथा LCL = $\overline{S} B_4 \overline{S}$
- (2) UCL = $B_4\overline{S}$, CL = B_4 तथा LCL = $B_3\overline{S}$
- (3) UCL = $B_4\overline{S}$, CL = \widetilde{S} तथा LCL = $B_3\overline{S}$
- (4) UCL = $B_3\overline{S}$, CL = \overline{S} तथा LCL = $B_4\overline{S}$
- The relation between expected value of R and SD σ with usual constant factors 132.

R के अपेक्षित मूल्य तथा प्रचलित नियतांक घटकों के साथ SD ठ के बीच सम्बन्ध है (1) $E(R) = d_1 \sigma$ (2) $E(R) = d_2\sigma$ (3) $E(R) = D_1\sigma$ (4) $E(R) = D_2\sigma$

- 133. R-charts are preferable over o-charts because
 - (1) R and SD fluctuate together in case of small samples
 - (2) R is easily calculable
 - (3) R-charts are economical
 - (4) All of the above

R-चार्ट, o-चार्ट से अधिक श्रेष्ठ होते हैं, क्योंकि

- छोटे प्रतिदशों के मामले में R तथा SD एकसाथ बदलते रहते हैं
- (2) R आसानी से परिकलनीय होता है
- (3) R-चार्ट किफ़ायती होते हैं
- (4) उपरोक्त सभी

- 2-Sigma trial control limits for C-chart for equal size samples are given as
 - (1) UCL = $\overline{C} + 3\sqrt{C}$, CL = \overline{C} and LCL = $\overline{C} 3\sqrt{C}$
 - (2) UCL = $\overline{C} + \sqrt{2C}$, CL = $2\overline{C}$ and LCL = $\overline{C} \sqrt{2C}$
 - (3) UCL = $\overline{C} + 2\sqrt{C}$, CL = \overline{C} and LCL = $\overline{C} 2\sqrt{C}$
 - (4) UCL = $\overline{C} + 2\sqrt{C}$, CL = $2\overline{C}$ and LCL = $\overline{C} 2\sqrt{C}$

बराबर आकार के प्रतिदर्शों के लिए C-चार्ट के लिए 2-सिग्मा परीक्षण नियंत्रण सीमायें दी जाती हैं

- (1) UCL = $\overline{C} + 3\sqrt{C}$, CL = \overline{C} तथा LCL = $\overline{C} 3\sqrt{C}$
- (2) UCL = $\overline{C} + \sqrt{2C}$, CL = $2\overline{C}$ तथा LCL = $\overline{C} \sqrt{2C}$
- (3) UCL = \overline{C} + $2\sqrt{C}$, CL = \overline{C} \overline{C} \overline{C} \overline{C} $2\sqrt{C}$
- (4) UCL = $\overline{C} + 2\sqrt{C}$, CL = $2\overline{C}$ \overline{A} at LCL = $\overline{C} 2\sqrt{C}$
- Drawing items from a lot without giving any head to their quality is known as 135.
 - (1) random sampling

- (2) purposive sampling
- (4) blind sampling

गुणवत्ता के लिए बिना किसी ध्यान को दिये किसी लॉट से आइटम के निष्कासन को कहा जाता है

(1) यादृच्छिक प्रतिचयन

(2) सोद्देश्य प्रतिचयन

(3) क्रमबद्ध प्रतिचयन

- (4) अन्ध प्रतिचयन
- 136. A curve showing the probability of accepting a lot of quality p is known as

54

(I) OC curve

(3) Gompertz curve

- (4) None of the above

एक वक्र जो गुणवत्ता के एक लॉट के स्वीकार करने की प्राथिकता को दर्शा रहा है, जाना जाता है (1) OC 研

(2) ASN 母系

(3) गाम्पर्रज वक्र

(4) उपरोक्त में से कोई नहीं

In a double sampling plan, a decision about the acceptance or rejection of a lot 137.

- (2) will always reach
- (3) will sometimes reach
- (4) None of the above

एक डबल प्रतिचयन योजना में एक लॉट की स्वीकृति या अस्वीकृति के बारे में निर्णय कभी नहीं होगा

(2) हमेशा होगा

(3) कभी-कभी होगा

(4) उपरोक्त में से कोई नहीं

138. If p is the unknown proportion of defectives in the lot and p_0 , p_1 are two values

 $\alpha = p$ [reject the lot | $p \le p_0$] $\beta = \rho \mid \text{accept the lot} \mid p \geq p_1 \mid$

Then the operating characteristic function L(p) takes the values as

- (1) $L(p)=1-\alpha$ when $p \le p_0$ and $L(p)=\beta$ when $p=p_1$
- (2) $L(p)=1-\alpha$ when $p < p_0$ and $L(p)=\beta$ when $p \ge p_1$
- (3) $L(p)=1-\alpha$ when $p \ge p_0$ and $L(p)=1-\beta$ when $p \ge p_1$
- (4) $L(p)=1-\alpha$ when $p \le p_0$ and $L(p)=1-\beta$ when $p \ge p_1$

यदि p किसी लॉट में दोषपूर्णों का अज्ञात अनुपात है तथा p_0, p_1 दो ऐसे मान है कि $p_0 < p_1$ यह भी

$$\alpha = p$$
 | लॉट की अस्वीकृति | $p \le p_0$]
 $\beta = p$ | लॉट की स्वीकृति | $p \ge p_1$ |

तब ऑपरेटिंग विशेषता फलन L(p) मान ले सकता है

- L(p)=1-α जब p ≤ p₀ तथा L(p)=β जब p = p₁
- (2) L(p)=1-α जब p< p₀ तथा L(p)=β जब p≥ p₁
- (3) L(p)=1-α जब p≥ p₀ तथा L(p)=1-β जब p≥ p₁
- (4) $L(p)=1-\alpha$ जब $p \leq p_0$ तथा $L(p)=1-\beta$ जब $p \geq p_1$
- When there is no defective in the lot, the OC function for p = 0 is 139.
 - (1) L(0) = 0

(2) L(0)=1

(4) None of the above

जब किसी लॉट में कोई दोषपूर्ण नहीं है, p=0 के लिए OC फलन होता है (3) L(0) = ∞

(1) L(0) = 0

(2) L(0) = 1

(3) $L(0) = \infty$

- (4) उपरोक्त में से कोई नहीं
- The lowest ASN curve of a sampling plan as compared to any other sampling plan under similar condition is considered 140.
 - (1) better

(2) inferior

(3) useless

(4) None of the above

(P.T.O.)

(1) श्रष्ठतर	केसी दूसरे प्रतिचयन योजना की तुलना में किसी प्रतिचयन योजना किया जाता है
(3) निष्कल	30-30-30-30-30-7- 3 0-3-30-30-
	(4) उपरोक्त में से कोई नहीं s secular trend with the help of two points only is
5-40-00-0 00	acid with the help of two points
a sapine method	(MPEN)
(3) moving and	(2) method of semi-averages
(3) moving average method केवल दो बिन्दुओं के द्वारा सेक्सल र	200
केवल दो बिन्दुओं के द्वारा सेक्यूलर उप (1) ग्राफिक विधि	ानात ज्ञात करने की विधि का नाम है
(3) चल माध्य विधि	(2) अर्द्ध-औसत विधि
	(4) वक्र आसंजनं
142. Parabolic trend is a polynomial	
परवलयिक प्रवृत्ति किस डिग्री का बहुपद है	?
(1) 0 (2) 1	
143. For additive model, the sum	(3) nth (4) ∞
143. For additive model, the sum of the aline मॉडल में मौसमी विचरण का योग हो	he seasonal indices is
(1) 1 (2) n	(3) 0
186)	(4) 100
5	7

(186)

		viti-se
	The harmonic analysis method of	determining cycle utilises
144	The harmonic analysis method of	t- method
144	**************************************	(2) graph method
	(1) curve fitting	(4) Fourier series
		(4) Fourier
	(3) matrix method	6.20
	हॉमॉनिक विश्लेषण में चक्र ज्ञात करने की	वाध ह
	हॉर्मोनिक विश्लेषण म प्रश्न का (1) वक्र आसंजन (2) ग्राफ विधि	(२) आल्यह विधि (४) फूरियर शृंखला
	्यापंजन (2) ग्राफ विधि	(3) 51. 22
	(1) as sugar	variations from the time series is to remove (3) C and S (4) T , C and S
	· · · · · irregulal	variations from the time
145	The only way of isolating in ega-	(3) C and S (4) T, C and S
143	Tand S (2) T and C	(3) C and -
	(1) T and S (2) 1 and 0	्र च्ये अलग किया जा सकता ह <i>ं</i>
	्र ६ निकालने से अनि	यमित रूपा का जार
	कालश्रेणी में से किनका निकार	यमित रूपों को अलग किया जा सकता है ? (3) C एवं S (4) T, C एवं S
	: 12) T एवं C	(3) C va S (4) T, C va S (5) C va S (6) T, C va S (7) T, C va S
	Question No. 146 to 15	ions : ि नागान्य रेखीय माँग
Di	rections (Quest the next five ques	(3) C एवं S (7) (8) C एवं S (9) (9) (1) (1) (1) (1) (1) (1)
re	lation to allswei	पांच प्रश्ना का का
F	देश (प्रश्न संख्या 146 स 100)	
22	म्बन्ध का प्रयोग करें।	R, where P is the price of goods X , M is incomed good R , then what is the demand function when
ζ,	5P	where P is the price of Samand function when
	0.1 - 100 - 5P + 0.004M - 3I	a good R, then what is the definition
	146. Qd = 100	0 good 14
	and PR is and PR = Rs	R, where P is the price of goods X, M to depend on the dependent function when d good R, then what is the demand function when 20? R, जहाँ P वस्तु X का मूल्य है, M आय है और PR का मूल्य है, M आय है और PR का मूल्य है, M आय है और PR का मूल्य है, तब माँग फलन क्या होगा जब $M = 40,000$ ह0 और
	M = Rs 40,000 a	R, जहाँ P वस्तु X का मूल्य है, M आय है और R , तब माँग फलन क्या होगा जब $M = 40,000$ है और
	100-5P+0.004M-5P	रू, जी फलन क्या होगा जब M =
	Qd = 100 R का मूल्य ह	, de 11.
	-13/1	
	pR = 20 00	(2) $Qd = 160 - 5P$
	(1) $Qd = 360 - 5P$	160 100P
	(1) Qd = 300	(4) $Qd = 160 - 100P$
	04 = 260 - 5P	
	(1) $Qd = 260 - 5P$	58

147. The price of
147. The price elasticity of demand is 5-0 if a 10 percent increase in the price result (1) 2% decrease in quantity
and is 50 if a 10 percent increase in the
(1) 2% decrease in the price result
" yuannity d
(2) 5% decrease in quantity
(2) 5% decrease in quantity demanded (3) 10% decrease in quantity demanded
decrease in quantity
(4) 50% decrease in
(4) 50% decrease in quantity demanded
" की भूत्य-लोच 5.0 है यहि मना क
(1) माँगी गर्भ " 10 प्रतिशत वृद्धि प्रतिप्रक्षित के व
माँग का मूल्य-लोच 5·0 है यदि मूल्य में 10 प्रतिशत वृद्धि प्रतिफलित होती है (1) माँगी गयी मात्रा में 2% हास
(3) माँगी गयी मात्रा में 10% हास (4) गर्मी गयी मात्रा में 5% हास
ा नाता म 10% हास
148 🔥 😘
10 percent increase in the
10 percent increase in the quantity of pizza demanded results from a माँगी गयी पिज्ञा की मात्रा में 20 प्रतिशत की वृद्धि इसके मृत्य में 10 -6
प्रतिक्षत है। पिज्ञा के लिए माँग की मूल्य-लोच है (2) 10-0 (2) 0-7
प्रतिफल है। पिज्य के कि प्रतिशत की विकास
के लिए मींग की मूल्य-लोन के सूल्य में 10 प्रक्रिक
(1) 2-0
149. ७० (३) ०-५
The value of elasticity of d
(1) clasticity of demand repose
(1) zero to one (2) on (3) 0.5 (4) 20.0
माँग-लोच का मान
राज की मान
(1) zero to one (2) one to infinity (3) zero to infinity (4) one to zero (1) श्रून्य से एक तक
1 7 7 7
(3) शून्य से अनन्त तक (2) एक से अनन्त तक
सीमाओं के बीच होता है। (4) एक से शून्य तक

150. When the price elasticity of demand for a good equals to

- (1) 0, the demand curve is horizontal
- (2) 1, the demand curve is vertical
- (3) 1, the demand curve is horizontal
- (4) 0, the demand curve is vertical

जब एक वस्तु के लिए माँग का मूल्य-लोच बराबर होता है

- (1) 0, माँग वक्रता क्षैतिज होता है
- (2) 1, माँग वक्रता लम्बवत होता है
- (3) 1, माँग वकता क्षैतिज होता है
- (4) 0, माँग वक्रता लम्बवत होता है

the second secon	

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्तर-पत्र का ही मूल्यांकन किया जावेगा।
 - अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पैन से निर्धारित स्थान पर लिखें।
 - उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाड़ा कर दें। जहाँ जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
 - औ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं० और ओ॰ एम॰ आर॰ पत्र सं० की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
 - 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कथ निरीशक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग
 - प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाड़ा
 - प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक
 - ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर श्रृत्य अंक दिये जायेंगे।
 - एक कार्य के लिये प्रश्त-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
 - परीक्षा के उपरान्त केवल ओ०एम०आर० उत्तर-पत्र परीक्षा भवन में जमा कर दें।
 - परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
 - यदि कोई अध्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भा होगा/होगी।