M.Sc Geology code No (483)

Set No. 1

Question Booklet No.

16P/205/22

	(To be fil	led up by th	e candidate	by blue/bl	ack ba	ll-poin	pen)		
Roll No.									
Serial No.	of OMR A	nswer Shee	·(d	2016)		••••	••••		•••••
				**************		(5	Signature	of Invigilat	or)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it
 contains all the pages in correct sequence and that no page/question is missing. In case of faulty
 Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
 fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfairmeans.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero marks).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

Total No. of Printed Pages: 32

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण पृष्ठ पर दिये गए हैं।]

ROUGH WORK रफ़ कार्य

No. of Questions: 150

प्रश्नों की संख्या: 150

Time: 2 Hours

Full Marks: 450

समय : 2 घण्टे

पूर्णाङ्क : 450

Note: (1) Attempt as many questions as you can. Each question carries 3

(Three) marks. One mark will be deducted for each incorrect
answer. Zero mark will be awarded for each unattempted question.

अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 (तीन) अंकों का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जायेगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।

- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.

 यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।
- **01**. The youngest rocks of the basaltic crust on the sea floor are found along:
 - (1) Abyssal plains

(2) Mid oceanic ridges

(3) Fracture zones

- (4) Subduction zone
- 02. The 'Great Boundary Fault' occurs in the region of :
 - (1) Alwar

(2) Chittorgarh

(3) Jaipur

(4) Haridwar

03.	The fold in which the axes plunges directly down the dip of the axial surface is termed as:						
	(1)	Normal fold			(2)	Reclined fold	
	(3)	Cascade fold	l		(4)	Drag fold	
04.	Perr	neability is a	meas	sure of the a	bility	y of the fluid to:	
	(1)	Contract wh	en pr	essure is ap	pplied	d	
	(2)	Flow through	h a po	orous rock		2	
	(3)	Produce ene			ď		
	(4)	None of the	above	;			
05.	Who	en the minim	um p	rincipal str	ess i	is vertical, the resultant faul	lt
	(1)	Strike-slip fa	ault		(2)	Oblique slip fault	
	(3)	Normal fault			(4)	Reverse fault	
06.	The	R . F. of a geo	ologic	al map prep	ared	d on a scale of 2cm=1 km. is	:
	(1)	1:50,000	19		(2)	1 :5000	
	(3)	1:500			(4)	1 :100000	
07.	Had	e of a vertical	fault	will be:			
	(1)	900	(2)	45°	(3)	0° (4) 40°	
08.	The calle		separa	ates a conve	ex an	nd concave segment of a fold i	S
	(1)	Median poin	t		(2)	Inflexion point	
	(3)	Hinge point			(4)	Crest point	
09.	Schi	st represents	a ma	terial which	ı has	s mechanical properties as :	
	(1)	Homogeneou	is an	d isotropic			
	(2)	Homogeneou	ıs an	d anisotrop	ic		
	(3)	Inhomogene	ous a	nd anisotro	pic		
	(4)	Inhomogene	ous a	and isotropic	С		
	a. (70)						

10 .	The	thrust fault will be generated	whe	en(where σ_1 is maxi.
	stre	ss):		
٠	(1)	σ_1 and σ_2 are horizontal	(2)	σ_1 and σ_3 are horizontal
	(3)	σ_2 and σ_3 are horizontal	(4)	None of the above
11.		"Ring of Fire"- an arcuate bel anoes on earth is found in :	t with	n the largest number of active
	(1)	Atlantic ocean	(2)	Pacific ocean
	(3)	African rift valley	(4)	Mid oceanic ridges
12.	Lith	osphere comprises of :		
	(1)	Crust and Mantle		
	(2)	Crust, Mantle and Outer core	е	
	(3)	Crust and Upper mantle		
	(4)	Crust and Lower mantle		
13.	90°	E ridge is located in :		~
	(1)	Antartic ocean	(2)	Arabian Sea
	(3)	Indian ocean	(4)	None of the above
14.	Whe	ere do the ophiolite suit of rock	s oc	cur:
	(1)	Indus suture zone	(2)	Lesser Himalaya
	(3)	Brahmaputra valley	(4)	Himalayan foot hill zone
			٠	
15.	For data	obtaining true dip of a bed the required is :	mini	imum number of apparent dip
	(1)	One	(2)	Two
. *	(3)	Three	(4)	None of the above

16.	A sy	nformal anticline will have :								
	(1)	1) Upward arching beds having older rocks in core								
	(2) Downward arching beds having older rocks in con									
	(3)	Upward arching beds having								
	(4)	Downward arching beds hav								
17.	Star	urolite crystallizes in :		* * .						
	(1)	Monoclinic	(2)	Orthorhombic						
	(3)	Hexagonal	(4)	Triclinic						
10	Crre	abol of Transmit advance								
10.		abol of Trapezohedron:	(0)	1.11						
	(1)	hhl	(2)	hll						
	(3)	hkl	(4)	hol						
19.	Ske	w twin observed in :								
	(1)	Staurolite	(2)	Pyrite						
	(3)	Plagioclase	(4)	Gypsum						
20.	In p	yrite, twinning is present :								
	(1)	Geniculate	(2)	Iron cross						
	(3)	Mimetic	(4)	Swallo						
21.	It re	epresented by only one face :								
	(1)	Pinacoid	(2)	Pedion						
	(3)	Prism	(4)	Pyramids						
	****		mma	tric class:						
22 .	Wh	ich crystal system has one asy	198							
	(1)	Isometric	(2)	Trigonal						
	(3)	Monoclinic	(4)	Triclinic						

23.	Whi	ch of the following denotes a c	class	that has no symmetry at all:
	(1)	Pinacoidal	(2)	Pedial
	(3)	Domatic	(4)	Spheroidal
Maria Principal	- 57			
24.	The	Bravais lattice of sodium chlo	ride	structure is :
	(1)	Primitive cell	(2)	Body centred cube
	(3)	Face centred cube	(4)	Base centra
25	In +1	ho alsow twins the twinl.i!		1
45.		he skew twins the twin plain i	s:	thought as an
	(1)	Dome	(2)	Bipyramid
٠	(3)	Prism	(4)	Side pinacoid
26	Min	omol muhiah amastalliasa isa ada	. 1	1:- 6
20.		eral which crystallizes in orth		mbic form:
	(1)	Topaz	(2)	Beryl
	(3)	Quartz	(4)	Tourmaline
27.	Ena	ntiomorphic crystal forms pos	sess	:
	(1)	Only a centre of symmetry		
	(2)	Only a plane of symmetry		
	(3)	Neither a plane nor a centre	of sv	mmetry
	(4)	Both a plane and a centre of		**************************************
		• 00000 0000 00	~ <i>J</i>	
28.	Ope	n form of intermediate between	en a	prism and a pyramid whose
		s cut the vertical axes and one		
	(1)	Dome	(2)	Pyramid
	(3)	Prism	(4)	Diametral Prism

29.	The	base centred arrangement of	unit	cell is found in :
	(1)	Orthorhombic crystal	(2)	Triclinic crystal
	(3)	Cubic crystal	(4)	Hexagonal crystal
	()	\	(-)	
30.	Zirc	on crystallizes in :		
	(1)	Isometric	(2)	Hexagonal
	(3)	Tetragonal	(4)	Triclinic
31.	An i	nterfacial angle is :		
34	(1)	An external angle between a adjoining face	given	face and the extension of the
	(2)	An internal angle between tw	o ad	joining faces
	(3)	An angle between their faces	on t	he same side of a crystal
	(4)	None of these		
32.	The	twin plaine is:		*
	(1)	A plain in a twin crystal which		common to both the halves of ane of symmetry of one of the
	(2)			common to both the halves of symmetry of one of the twins
	(3)	A plain in a twin crystal having symmetry	ng no	definite bearing with plane of
	(4)	1&2 are correct		
33.	Whi	ich of the following properties	can t	be used to distinguish between
	Plag	gioclase feldspar and quatz?		
	(1)	Lustre	(2)	Streak
	(3)	Colour	(4)	Cleavage
	5 S5S			

34.	Cho	oose the Diamagnetic Mineral	:	(E)
٠	(1)	Pyrite	(2)	Ilmenite
	(3)	Calcite	(4)	Apatite
35	Blu	e Beryl is :		
5 5.				*
	(1)	Aquamarine	(2)	Agate
	(3)	Topaz	(4)	(1) & (3) Both
36.	Whi	ich of the following mineral do	es no	ot contain silica :
	(1)	Quartz	(2)	Muscovite
	(3)	Halite	(4)	Plagioclase
37.	A m	nineral has pearly luster:		
	(1)	Diamond	(2)	Muscovite
	(3)	Opal	(4)	Asbestos
38.	Sch	eelite shows:		¥ .
	(1)	Phosphorenscence	(2)	Fluouresence
	(3)	Triboluminescence	(4)	Thermoluminescenc
39.	Opti	ically Negative and has low ex	tincti	on angles :
		X-17 W		
	(1)	Quartz	(2)	Chlorite
	(1) (3)	Quartz Hornblende	(2) (4)	Acmite Acmite

40 .	Qua	rtz is :		
	(1)	Positive Uniaxial	(2)	Negative Uniaxial
	(3)	Negative Biaxial	(4)	Positive Biaxial
	1121	er e		
41.	Prop	perty seen when several gra	ins a	are viewed collectively under
	mici	roscope in polarized light:		(1.4)
	(1)	Play of colours	(2)	Twinkling
	(3)	Pleochroism	(4)	Interference figure
				r i i
42.	The	minerlogical Phase Rule is given	ven b	y the formula :
	(1)	P+F=C-2	(2)	P-F=C+2
	(3)	F=C+P-2	(4)	P+F=C+2
				30 *
43.	High	n temperature polymorph of q	uartz	;
	(1)	Coesite	(2)	Cristobalite
	(3)	Tridymite	(4)	Opal
44.	Whi	ich of the following is used to	meas	sure retardation :
	(1)	Bertland lens	(2)	Condenser
	(3)	Berek compensator	(4)	Iris diaphragm
		*		
45 .	Dia	phaneity is the property relate	ed to	•
	(1)	Dispersion of light	(2)	Transmission of light
	(3)	Reflection of light	(4)	Refraction of light
	. ,			,

46.	Diamond is exposed to sun, it exhibits:						
	(1)	Phosphorescence	(2)	Fluorescence			
	(3)	Opalescence	(4)	Pleochroism			
477	σ	antico de la porta de la companya della companya della companya de la companya della companya de		_			
47.	lan	talite and Brookite are examp	les o	f:			
	(1)	Polymorphs	(2)	Isomorphs			
	(3)	Pseudomorphs	(4)	Paramorphs			
48.	High	hest Birefrignence in :		,			
	(1)	Plagioclase	(2)	Tourmaline			
	(3)	Zircon	(4)	Calcite			
49 .	Whi	ich of the following is a homop	olar	bond ?			
	(1)	lonic bond	(2)	Covalent bond			
	(3)	Metallic bond	(4)	Van der Wall's bond			
50 .	We	can know internal structure o	f min	erals from their study by:			
	(1)	X-rays	(2)	UV rays			
	(3)	Cosmic rays	(4)	Visible light			
51.	Whi	ch of the following is a high pr	ressu	re variety of silica?			
	(1)	Chert	(2)	Chalcedony			
	(3)	Cristobolite	(4)	Coesite			
		9					

52 .	The	mineral cons	tituti	ng an exam	ple o	f omission solid solution is
	(1)	Pyrolusite			(2)	Pyrite
	(3)	Pyrrhotite			(4)	Pigeonite
53.	Fluc	orite is often o	chara	cterized by	how 1	many sets of cleavage?
	(1)	5	(2)	1	(3)	None (4) 4
54.	The	streak of bar	ite or	barites is:		
	(1)	Blue			(2)	Colourless
	(3)	White		54	(4)	Yellow
55.	Whi	ch of the follo	owing	minerals d	lispla	y fluorescence ?
	(1)	Actinolite			(2)	Feldspar
	(3)	Scheelite			(4)	Pyrope
56.	Wh	ich amongst t	the fo	llowing has	large	est ionic radius ?
	(1)	Oxygen			(2)	Aluminium
	(3)	Silicon			(4)	Magnesium
57 .	Wh	ich of the foll	owing	g is an ortho	osilica	ate ?
	(1)	Axinite			(2)	Enstatite
	(3)	Quartz			(4)	Olivine

58.	The	co-ordination	n nun	nber of Na	a⁺ in N	aCl is:				
	(1)	2	(2)	6	(3)	4		(4)	8	
59 .	Ca-	bearing oliving	ne is :	2						
	(1)	Fayalite			(2)	Montice	llite			
	(3)	Tephroite			(4)	Knebeli	te			
60.	Whi	ich of the follo	owing	is not a	metamo	orphic mir	neral	?		
	(1)	Staurolite			(2)	Jasper				
	(3)	Olivine			(4)	Garnet		¥		
61.	Mos	st common an	nphib	ole is :						
	(1)	Hornblende	•		(2)	Pigeonit	e			
	(3)	Anthophylli	te		(4)	Glaucop		:		
62.	Whi	ch of the fol	lowin	g garnet	s is us	ed as no	thfin	don	minara	.1
	dian	nond (kimber	lite) e	xploratio	n ?	ou uo pu	CIIIIII	uci	111111618	ti III
	(1)	Almandine			(2)	Spessart	ine			
	(3)	Pyrope			(4)	Uvaravite	: ,			
63.	Chia	astolite is a va	riety (of:						
	(1)	Anorthite	,	€	(2)	Anorthoc	lase			
	(3)	Andalusite			(4)	Andradit				
					10 (15)					

- 64. Which amongst the following minerals crystallize in triclinic system?
 - (1) Sillimanite

(2) Fayalite

(3) Kyanite

(4) Tremolite

65. Primary magma:

- (1) Is formed by magmatic differentiation
- (2) Is a magma as it exists immediately after separation from its source region
- (3) Is formed by contamination
- (4) Is a fractionated magma
- 66. Norite is essentially composed of:
 - (1) Clinopyroxene and plagioclase feldspar
 - (2) Orthopyroxene and Olivine
 - (3) Only orthopyroxene
 - (4) Orthopyroxene and plagioclase feldspar
- 67. Alkali granite is essentially composed of
 - (1) Alkali feldspar and quartz only
 - (2) Alkali and plagioclase feldspars and quartz
 - (3) Alkali and plagioclase feldspars, quartz and alkali mafic minerals
 - (4) Plagioclase feldspar,quartz and hornblende

- 68. Plutonic equivalent of phonolite is:
 - (1) Mela nepheline syenite
- (2) Granite

(3) Syenite

- (4) Gabbro
- 69. Alkali feldspar syenite is essentially composed of :
 - (1) Both alkali and plagioclase feldspars
 - (2) Minerals need microscope to see.
 - (3) Only alkali feldspar
 - (4) Plagioclase feldspar and biotite
- 70. What is phaneritic texture in igneous rocks?
 - (1) Minerals are too large to see with naked eye
 - (2) Minerals need microscope to see
 - (3) Glassy in nature
 - (4) Very fine-grained groundmass
- 71. Mafic minerals in igneous rocks are:
 - (1) Light in colour due to presence of Al and Si
 - (2) Dark in colour due to presence of Fe and Mg
 - (3) Dark in colour due to presence of Al and Si
 - (4) Dark in colour due to presence of Si and Fe

72 .	Colo	ur Index (CI) of a melanocratic	c ign	eous rock varies between:
	(1)	0 and 50	(2)	35 and 65
	(3)	20 and 65	(4)	65 and 100
73 .	Silic	a contents in a felsic igneous	rock	is:
	(1)	Always less than 55%	(2)	Always more than 66%
	(3)	Varies between 55% and 66%	6 (4) V	Varies between 45% and 52%
74	T			
74.	in a	peraluminous igneous rock:		
	(1)	$Al_2O_3 > CaO + Na_2O + K_2O$	(2)	$Al_2O_3 < CaO + Na_2O + K_2O$
	(3)	$Al_2O_3 = CaO + Na_2O + K_2O$	(4)	Al ₂ O ₃ > CaO+K ₂ O
7 5.	Whi	ch of the followings is not an	ultra	mafic igneous rock?
	(1)	Troctolite	(2)	Komatiite
	(3)	Peridotite	(4)	Dunite
76.	Whi	ich of the followings is a best o	riter	ion to classify plutonic igneous
	rocl	ks?		
	(1)	Textures		
	(2)	Essential mineral constituer	nts	
	(3)	Nature of groundmass		
	(4)	Mode of occurrences		

P.T.O.

77	. Mi	neral composition of webs	sterite	is:				
	(1)	1) Orthopyroxene and olivine						
	(2)	2) Clinopyroxene and olivine						
	(3)	Orthopyroxene and cli	nopyro	oxen	e ;			
	(4)	Hornblende and biotite						
78	. Fol	lowing oxides are used in	TAS	class	ification :			
	(1)	Al_2O_3 and SiO_2		(2)	MgO, CaO and SiO,			
•	(3)	Na ₂ O, K ₂ O and MgO		(4)	SiO_2 , Na_2O and K_2O			
79	79. Granularity in an igneous rock defines:							
	(1)	Degree of crystallization	1		36			
	(2)	Absolute and relative si	zes of	crys	tals			
	(3)	Relationship between co	ystals	and	l groundmass			
	(4)	Shape of crystals:						
80.	Coa	rse-grained sediments ar	e tran	spor	ted by:			
	(1)	Traction process		(2)	Saltation process			
	(3)	Suspension process	((4)	None			
81.	Part	icle size range of arenace	ous ro	cks	is:			
		2-4 mm			1/16-2 mm			
	(3)	1/256-1/16 mm			<1/256 mm			
		a the same of the	17					
			11		4710.74			

82 .	Ripp	le marks occur on the:		8
	(1)	Lower surface	(2)	Upper surface
	(3)	Internal structure	(4)	External structure
83.	Sole	marks occur on the:		
	(1)	Lower surface	(2)	Upper surface
	(3)	Internal structure	(4)	External structure
84.		ole marks with bifurcated cre	est a	nd ripple index from 2-5 are
	gene	erated by:		
	(1)	Wave	(2)	Current
	(3)	Tide	(4)	Storm
85.	Her	ringbone cross-bedding indica	ate se	edimentation in:
	(1)	Fluvial environment	(2)	Lacustrine environment
	(3)	Tidal environment	(4)	Deep marine environment
				y t
86	. Gra	nded beds form in marine envi	ronn	
	(1)	By traction currents	(2)	By turbidity currents
	(3)	By suspension fall out	(4)	By debris flow
				9) B
87	. Qu	artz arenites contain:		
	(1)	<50% Quartz	(2)	
	(3)	75-95% Quartz	(4)	>95% Quartz
	. ,			

88.	Ark	Arkoses are sandstones which contain:						
	(1)	Appreciable amount of feldspar						
	(2)	Low percentage of feldspar						
	(3)	Negligible amount of feldspa	ur					
	(4)	No feldspar						
80	Sam	datana and i i 150/	: (18 0)					
09 .	as:	idstones containing>15% mat	rix a	nd <75% quartz are classified				
	(1)	Arkose	(2)	Greywacke				
	(3)	Lithic arenite	(4)	Quartz arenite				
		ē .	(')	Qual D archite				
90.	Lith	ic arenites are :						
	(1)	Quartz rich sandstones						
	(2)	Feldspar rich sandstones						
	(3)	Rock fragments rich sandsto	nes					
	(4)	Clay rich sandstones						
91	Clay	stones contain :						
	(1)	<33% clay	(0)					
	(3)	>66% clay	(2)	33-66% clay				
	(0)	200% Clay	(4)	>100% clay				
92 .	Argil	llaceous sediments containing	g clay	y between 33-66% are known				
	as:		- Consistent	o con aro miowii				
	(1)	Mudstone	(2)	Siltstone				
	(3)	Claystone	(4)	Dropstone				
			8 d	- ,				

93.	Micrites are orthochems containing crystals:							
	(1)	<4 µ m	(2)	$4-10\mum$	(3)	$>10\mum$	(4)	$>100\mu$ m
94.	Oolit	tes form in :						
	(1)	Agitated wat	er		(2)	Calm water		
	(3)	Cool water			(4)	None		
								a in both
95 .						ated with inc	creas	se in both
	tem	perature and	pres	sure best de	efines	:		
	(1)	Contact met	amor	phism	(2)	Burial metar	norpl	hism
	(3)	Partial melti	ng	es	(4)	Regional me	tamo	rphism
						79.1		
96.	Alka	ali amphibole	:				8	
	(1)	Glaucophan	ie		(2)	Albite	()	
	(3)	Muscovite			(4)	Jadeite	1	
							1.	O
97	. Wh	ich one of the	follo	wing is not	an a	gent of metam	orpn	ISIII ?
	(1)	Fluid			(2)	Time		
	(3)	Rock type			(4)	Heat-temper	ratur	е
								.1
98	. Wh	at type of	meta	morphism	is a	associated w	ith	the zeolite
	me	tamorphic fac	cies?					
	(1)	High grade			(2)	Low grade		
	(3)	- 1 alt			(4)	Intermediat	e gra	de
	(0)					4		

99	. W	hich of the following metamo	rphic	facies is characterized by the
		rope rich garnet+ omphacite		
	(1)	Blue Schist	(2)	Granulite
	(3)	Eclogite	(4)	Greenschist ,
10	0 . Mi	gmatite is an example of:	*	
	(1)	Non foliated rock	(2)	Weakly foliated rock
,	(3)	Strongly foliated	(4)	
10	1 . Ca	-poor pyroxene is:		
	(1)	Pigeonite	(2)	Omphacite
	(3)	Enstatite	(4)	Jadiete
10	2 .A a	amphibole which is characteris	stic o	f high temperature
	(1)	Edenite	(2)	Hornblende
	(3)	Tremolite	(4)	Paragasite
103	3. A p	phase diagram with a specified	l bulk	composition is known as :
	(1)	Isograde diagram	(2)	AFM diagram
	(3)	ACF diagram	(4)	Pseudosection
104	.Cha	racteristic mineral of charnoc	kites	:
	(1)	Hypersthene	(2)	Pyroxene
	(3)	Garnet	(4)	Sillimanite
		9		

			0				
105 .	Stre	ss minerals which are produ	iced	in metamorphic rocks under			
t	he s	tress factor?		R			
((1)	Kyanite	(2)	Sillimanite			
(3)	Cordierite	(4)	Olivine			
106 . I	Low	grade schist are:					
((1)	Staurolite schist	(2)	Garnet schist			
((3)	Chlorite schist	(4)	Cordierite schist			
				malting indicates:			
107.	In I	high grade metamorphism, bi	otite				
	(1)	Rock cooling	(2)	Rock hydration			
	(3)	Rock uplifting	(4)	Rock dehydration			
				X + -			
108.	The	metamorphic facies diagnosti	c of	subduction zone is:			
	(1)	Granulite	(2)	Blueschist			
	(3)	Pyroxene hornfels	(4)	Hornblende hornfels			
				the following?			
109	.Wh	o proposed the first geologic-t	ıme-	scale amongst the following?			
	(1)	Darwin	(2)	Hutton			
	(3)	Steno	(4)	Holmes			
		¥		it a scale 2			
110	110. Which is the oldest era of the geologic- time-scale?						
	(1)	Hadean	(2) Archean			
	(3)	Proterozoic	(4) Palaeozoic			
	, ,						

111	. The	basic unit of	litho	stratigraphi	ic clas	ssification is :		
	(1)	Supergroup			(2)	Group		
	(3)	Formation			(4)	Bed		
					E E			
112	.In si	tratigraphic c	lassi	fication whi	ch of	the following	unit	s is used for
	102	ous and meta						
	(1)	System			(2)	Period		
	(3)	Eon .			(4)	Lithodeme		
113	In a	transgressive	e seq	uence whic	h of t	the following t	vpe	of sediment
60		mulation exis					JI	
	(1)	Coarsening u	upwa	rd				
	(2)	Homogeneou	ıs siz	ed sedimen	its			
	(3)	Alternating c	coarse	e and fine s	sedim	ents		
	(4)	Fining upwar	rd se	quence	(<u>*</u>			
114	T1					37		
114.	III W	nich part of Ir	ndia i	full marine	Meso	zoic successi	on is	exposed?
	(1)	Eastern Ghat	t.		(2)	Western Gha	t	
	(3)	Outer Himala	aya	N N	(4)	Tethyan Him	alaya	ı
115.	The t	coal geologica	n spa	n of Mesoze	oic Er	a is:		
		1 mm	(2)	185 Ma	(3)	195 Ma	(4)	205 Ma
			0					

116.	Dur	ing which of the following	g era	as, the largest number of				
	palaeogeographic reconstructions took place?							
	(1)	Palaeozoic	(2)	Cenozic				
	(3)	Mesozoic	(4)	Proterozoic				
117.		poor record of marine fauna buted to:	a dui	ring Early Triassic is mainly				
		Sudden marine transgression	n(2)	Abnormal salinity				
			(4)					
	(3)	Magnetic reversal	(4)	Ollusual tectomom				
118	. Duri	ing which of the following tin	nes t	he cretaceous sea was on its				
		of transgression as well as h						
	(1)	Maastrichtian	(2)	Albian				
	(3)	Campanian	(4)	Turonian				
119	The	"cyclotheme" sedimentation is	s bes	at observed in				
117	(1)	Jurassic sediments	(2)	Triassic sediments				
	(3)	Cretacaceous sediments	(4)	Gondwana sediments				
120).Raji	mahal Formation consists of :						
	(1)	Sedimentary rocks only						
	(2)	Volcanic rocks only						
	(3)	Both sedimentary and volca	nic r	ocks				
		and plutonic igneo						
	(4)	Volcamo with P		gr d				

12	L. Wh	ich of the following represe	ents	a Lower Gondwana Marine				
		ercalation :						
	(1)	Umaria marine bed	(2)	Athgarh Sandstone bed				
	(3)	Umia beds	(4)	Raghavpurum shale beds				
122	122. The completete Triassic succession of Spiti region is known as							
	(1)	Lilang Group	(2)	Spiti shales				
	(3)	Kioto Limestone	(4)	Tagling Stage				
123	.The	modern concepts of stratigrap	hy is	applicable to:				
	(1)	Sedimentary rocks only						
	(2)	Sedimentary and volcanic Ign	eous	rocks				
	(3)	Sedimentary and low grade m	netan	norphic rocks				
	(4)	Sedimentary Igneous and me						

124. A stratum is a :

- (1) Smallest layered unit of sedimentary rock
- (2) Two layered unit of sedimentary rock
- (3) The whole sedimentary unit of a basin
- (4) Can be a sedimentary rock of any dimension

125 .	" Pre	esent is key to past" is related	to:	149			
	(1)	Principle of superposition					
	(2)	Principle of original horizonta	lity				
	(3)	Principle of original continuity	y				
	(4)	Principle of uniformitarrianism	m				
126	. Sele	ct a lithodernic unit from the	follow	ring:			
	(1)	System	(2)	Suite			
	(3)	Period	(4)	Formation			
			n ie i	found in :			
127	The	complete palaeozoic successio	11 15				
	(1)	Kashmir Himalaya	(2)	Eastern ghat			
	(3)	Western ghat	(4)	Andman Islands			
128	. Find	d a chronostratigraphic unit :					
	(1)	Erathem	(2)	Era			
	(3)	Supergroup	(4)	Complex			
			. ,	and at			
129	Pre	cambrian / cambrian boundar	y 1S 1	ound at .			
	(1)	580 Ma (2) 520 Ma	(3)	540 Ma (4) 600 Ma			
		C. C.	: n				
130	0.Wh	o gave the basic concept of fac	ies ?	V.			
•	(1)	Walther	(2)	Gresley			
	(3)	Steno	(4)	Hutton			
	(-)						

13	131. The oldest palaeozoic sediments of kashmir Himalaya belongs to :						
	(1)	Dogra slate	(2)	Salkhala group			
	(3)	Haimanta group	(4)	Thango formation			
132			aeozo	ic era in Kashmir Himalaya is			
		atigraphically known as :					
	(1)	Deccan Trap	(2)	Panjal Trap			
	(3)	Rajmahal Trap	(4)	Bhimtal volcanics			
133	3.The	youngest palaeozoic sedimer	its in	Kashmir Himalaya is grouped			
	(1)	Syringothyris limestone	(2)	Fenestella shale			
	(3)	Zewan formation	(4)	Lipak formation			
134	. Uma	aria marine beds are marine i	nterc	alatons in :			
	(1)	Karewa Group	(2)	Siwalik Group			
	(3)	Lower Gondwana	(4)	Middle Gondwana			
135	135: The beging of Gondwana sedimentation is characterised by deposition						
	of:						
	(1)	Laccustrine sediments	(2)	Marine sediments			
	(3)	Deltaic sediments	(4)	Glacial sediments			

136 .	The l	lower most subdivision of Dan	nuda	group is known as:
	(1)	Baraker formation	(2)	Raniganj formation
	(3)	Barren measure	(4)	karharbari formation
137.	.Epig	enetic deposits are formed:		
	(1)	After the formation of host ro	ck	
•	(2)	Before the formation and the	host	rock
	(3)	At the time of formation of ho	st ro	ock
	(4)	All of the above		
138	.Syn	gentic deposits are formed:		
	(1)	At the time and formation of	host	rock
	(2)	After the formation of host ro	ock	
	(3)	Both of the above		
	(4)	None of the above		
139	Ore.	deposits formed by mechan	ical	concentration process is also
	call	ed:		
	(1)	Placer deposit	(2)	Sedimentary deposits
	(3)	Evaporation deposit	(4)	All of the above
140	0 .The	e temperature range for the for	rmati	ion of hypothermal deposit is:
	(1)	300-500°C	(2)	300-450°C
	(3)	300-700°C	(4)	300-400°C

141. Hydrothermal process of formation of ore deposit is divided into:						
(1) Four divisions	(2)	Three divisions			
(3	Six divisions	(4)	None of them			
142. The lowest temperature range for the formation of hydrothermal ore						
deposits is :						
(1)	<50°C	(2)	<100°C			
(3)	<200°C	(4)	None of the above			
143. 'Porphyry' type copper deposit is found in our country:						
(1)		(2)	Khetri			
(3)	Mosaboni	(4)	Dariba-Rajpura			
144. In the cavity filling structure which term is very common:						
(1)		(2)	Vein			
(3)	Veinlet	(4)	None of them			
145. Placer deposits are formed as a result of:						
(1)	Mechanical concentration	(2)	Residual concentration			
(3)	Magneatic concentration	(4)				
146. Replacement structure is very common in :						
(1)	Hydrothermal deposit	(2)	Pegmatitic deposit			
(3)	Pyrometasomatic deposit	(4)	Magneatic deposit			

147. Sedimentary magnesite deposit is found:							
	(1)	Pithoragarh	(2)	Almora			
	(3)	Chamoli	(4)	All of the above			
148. Important polymetallic sulphide deposit is found to occur in :							
	(1)	Rajpura-Dariba	(2)	Sukindha			
	(3)	Khetri	(4)	None of the above			
		*					
149. Economic point of view which type of pegmatite is very important:							
	(1)	Complex pegmatite	(2)	Simple pegmatite			
	(3)	Both	(4)	None of them			
*							
150. Which copper ore is showing peacock colour:							
	(1)	Bornite	(2)	Braunite			
	(3)	Malachite	(4)	Azurite			

ROUGH WORK एक कार्य

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली-काली बाल-प्वाइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई 1. प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ 2. में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। 3. केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें। 4.
- उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को 5. गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- ओ ० एम ० आर ० पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा 6. प्रश्नपुस्तिका पर अनुक्रमांक और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमित
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित 7. साधन का प्रयोग माना जायेगा।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए 8. आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने 9. पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो संबंधित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ 11. का प्रयोग करें।
- परीक्षा के उपरान्त केवल ओ एम आर उत्तर-पत्र परीक्षा भवन में जमा कर दें।
- परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।