M.Sc. Chemistry 05349

Set No. 1

Question Booklet No.

16P/206/22(i)

	(To be fil	led up by ti	he candida	te by blue/	black ba	ll-point	pen)		
Roll No.									
	of OMR A		et	(عا	(6)		Signature o	of Invigilator	

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfairmeans.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this
- 12. Deposit only OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as

Total No. of Printed Pages: 40

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण पृष्ठ पर दिये गए हैं।]

ROUGH WORK रफ़ कार्य

No. of Questions: 150

प्रश्नों की संख्या: 150

Time:
$$2\frac{1}{2}$$
 Hours

Full Marks: 450

पूर्णाङ्क : 450

- Note: (1) Attempt as many questions as you can. Each question carries 3 (Three) marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
 - (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- **01.** Which of the following sets of quantum numbers is possible for an electron is '4f' orbital:

(1)
$$n = 4$$
, $l = 3$, $m = 4$, $s = +\frac{1}{2}$ (2) $n = 4$, $l = 4$, $m = +4$, $s = +\frac{1}{2}$

(3)
$$n = 4$$
, $l = 3$, $m = +1$, $s = -\frac{1}{2}$ (4) $n = 4$, $l = 2$, $m = 2$, $s = +\frac{1}{2}$

- **02.** In a three component system of phase equilibries the maximum number of degree of freedom can be:
 - (1) 4
- (2) 3
- (3) 2
- (4) 1

03. The total change in entropy 'ds' for an irreversible process is given by :

(1) $ds = d_s - d_s$

(2) $ds = d_a s + d_i s$

(3) ds = 0

 $(4) ds = -d_s s - d_s s$

Where $d_s = \text{entropy}$ exchanged with sorroundings

dis = entropy generated by irreversible process irr the system.

04. The maximum probability distribution in Fermi - Dirac statistics is equal is:

(1) $\alpha = \frac{1}{e^{(\alpha + \beta \in i)}}$

(2) $\alpha = \frac{1}{e^{(\alpha + \beta \in i)} + 1}$

(3) $\alpha = \frac{1}{\rho(\alpha + \beta \in i)}$

(4) $\alpha = \frac{1}{\alpha(\alpha - \beta \in i) + 1}$

05. If velocity constant of a reaction is 2.0×10^{-4} sec⁻¹ and rate of reaction is 8.0 × 10⁻⁴ moles lit⁻¹ sec⁻¹, then the concentration of reactant will be:

(1) 2.0×10^{-4} moles lit⁻¹

(2) 1.0 mole lit-1

(3) 4.0 moles lit-1

(4) 8.0 moles lit-1

06. The half-time period of a second order reaction is 90 minutes. Calculate the time required for completion for completion of 60% of the reaction :

(1) 270 minutes

135 minutes (2)

180 minutes (3)

(4) 90 minutes

07. The activation energy of a reaction can be calculated from the slope of the following graph:

(1) lnk vs T

(2) $lnk vs \frac{1}{T}$ (3) $\frac{lnk}{T}vs \frac{1}{T}$ (4) $\frac{T}{lnk}vs \frac{1}{T}$

- **08.** In any crystal ratio of Weiss indices of the face is 2:4:3, then the Miller indices would be: (4) 643 (1) 634 (2) 346 (3) 436 09. At constant temperature, the change of chemical potential with change in pressure is equal to: (1) entropy (2) partial molar enthalpy
 - (3)partial molar volume (4)Free energy
- 10. Absolute entropy of a substance can be calculated using :
 - (1) Zeroth Law of thermodynamics
 - (2) First Law of thermodynamics
 - (3) Second Law of thermodynamics
 - (4) Third Law of thermodynamics

(A) in terms of partition function:

(3) electronic

- 11. Which of the following partition function has largest value:
 - (1) Vibrational (2) Translational
- 12. Which of the following is correct expression for Helmholtz free energy

(4) rotational

- (1) $A = -k \ln \theta$ (2) $A = kT \ln \theta$
- (3) $A = -k T^2 \ln \theta$ (4) $A = -kT \ln A$
- 13. Which of the following is correct for most of the glasses?
 - (1) $T_g = T_m$ (2) $T_g = \frac{1}{2} T_m$
 - (3) $T_g < T_m$ (4) $T_g > T_m$

14.	Zieg	_l ler Natta cata	lyst is used in		,	polyı	merisation :
	(1)	Free radical		(2)	Auionic		
	(3)	Cationic	e e	(4)	Coordination	Ĺ	
15.	Can	onical ensemi	bles have sam	e:	ı	e e	
	(1)	T, P, N		(2)	Τ, μ, Ν		
	(3)	T, V, N		(4)	E, V, N		
16.	Elec	tro-osmotic fl	ux is the mass	s flux dı	ue to differenc	e of :	
	(1)	Potential		(2)	Temperature		®.
	(3)	Concentration	on	(4)	Pressure		
17.	The	wave mechan	nical model of	atom de	pends on :		
	(1)	deBroglie eq	uation				Tr.
	(2)	Heisenberg,	uncertainty p	rinciple	•		13
	(3)	Schrodinger'	s wave equation	on ,			į
	(4)	All of the al	oove				15
18.	The Boh	possible ene or orbit of hyd	atom is the firergy value in rogen atom is (2) -4.2 eV	the exc	ited state for	elec	tron in the

- 19. The energy of a rigid rotator is:
 - (1) $E = \frac{n^2h^2}{2m}J$

(2) $E = \frac{h^2}{2\pi I}J(J+1)$

(3) $E = \frac{n^2h^2}{2ma^2}$

- (4) $E = \frac{h^2}{\pi J} J(J+1)$
- 20. The decrease in free energy is equal to:
 - (1) mechanical work
- (2) Maximum work

(3) net work

- (4) zero
- 21. If Weiss indices of a face of a crystal are 1, ∞ , ∞ , then its Miller indices will be:

- (1) 1, 0, 0 (2) 0, 1, 1 (3) 0, 1, 0 (4) 1, 0, 1
- 22. Maximum number of α and β particles emitted when $\frac{238}{92}$ U changes
 - to 82 Pb are:
 - (1) 6α and 8β

(2) 8α and 8β

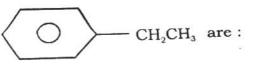
(3) 6α and 6β

- (4) 8α and 6β
- 23. The relation between e.m.f. and concentration for a cell is:
 - (1) Linear

(2) Exponential

(3) Logarithimic

(4) no relation


24. The spin only magnetic moment is given by :

	(1)	$\sqrt{45 (S+1)}$	(2)	$\sqrt{5(S+1)}$	(3)	$\sqrt{25 (S+1)}$	(4)	$\sqrt{5(S+3)}$
25.		pH of a solut H will be :	ion by	y mixing 50	cc of	f 0.2 M Hcl an	d 50	cc of 0.1 M
ŧ	(1)	1.8	(2)	2.4	(3)	1.3	(4)	4.2
26.		u				n and anion) i	s equ	al to 0.213
	ther	coordination	num	iber of catio	n is	:		
	(1)	2	(2)	4	(3)	3	(4)	6
27.	How	many norma	al mod	des are pos	sible	for water mole	ecule	?
	(1)	1	(2)	2	(3)	3	(4)	4
28	Who	t will be the	ESR f	requency of	a free	e electron in a	mag	netic field of
40.						73 ×10 ⁻²⁴ JT ⁻¹ , h		
	0.34	FI. GIVEII IIIAL	g – 2.0	0020 and p	٠.2.			
	(1)	20.0 GHz			(2)	09.50 GHz	9	
	(3)	19.0 GHz		W.	(4)	09.50 MHz		3 X
	mi	- laction rul	e for	transition is	n rota	ational energy	level	s in Raman
29.		ctrum is:			5			
	(1)	$\Delta J = \pm 1$	(2)	$\Delta J = +1$	(3)	$\Delta J = +2$	(4)	$\Delta J = \pm 2$

30.		nan spectrum is called:	nt an	a scattered frequencies in the
			,	
	(1)	Stoke's line	(2)	Anti Stoke's line
	(3)	Raman frequency	(4)	p - branch
31.	The	law which relates the solubition	ty of	a gas to its pressure is called :
	(1)	Roult's Law	(2)	Distribution Law
	(3)	Henry's Law	(4)	Ostwald's Law
32.	Whi	ch of the following has a bond	orde	er 2.5 :
	(1)	Hcl (2) CO	(3)	NO (4) N ₂
33.	The	equivalent conductance of a IN	solu	tion of an electrolyte is nearly:
	(1)	10 ³ times more than specific	cond	uctance
	(2)	10 ⁻³ times its specific conduct	tance	;
	(3)	100 times its specific conduc	tance	•
	(4)	110 times its specific conduc	tance	; :
34.	The	term symbols for M_n and T_i ato	ms a	ure :
		$^6\mathrm{S}_{3/2}$ and $^3\mathrm{F}_2$	(2)	°S _{5/2} and °F ₂
×	(3)	$^{6}\mathrm{S}_{1/2}$ and $^{3}\mathrm{F}_{3/2}$	(4)	$^6\mathrm{S}_{3/2}$ and $^3\mathrm{F}_{1/2}$

- **35.** The energy of a particle in a l dimensional box is given by :

- (1) $\frac{n^2 h^2}{m L^2}$ (2) $\frac{n h^2}{4 m L^2}$ (3) $\frac{n^2 h^2}{8 m^2 L^2}$ (4) $\frac{n^2 h^2}{8 m L^2}$
- 36. Radius of orbit in Bohr's hydrogen atom is:
 - (1) $r = \frac{n^2 h^2}{4 \pi a^2 m}$
- (2) $r = \frac{n^2 h^2}{4 \pi e^{m^2}}$
- (3) $r = \frac{n^2 h^2}{8 \pi^2 a^2 m^2}$
- (4) $r = \frac{n^2 h^2}{4 \pi^2 a^2 m}$
- 37. Assuming that the force constant for c = c, c = c, c = c are in ratio 3:2:1 and normal range of c = c sketch absorption is 1630 - 1690 cm⁻¹, what range would you expect for c = c stretch vibration?
 - 1152 1195 cm⁻¹ (1)
- (2) 1195 2005 cm⁻¹
- 2005 2080 cm⁻¹ (3)
- (4) 3260 3380 cm⁻¹
- 38. The number of NMR signals in the spectrum of

- (1)
- (2)
- (3) 2
- (4)
- 39. A what field would methyl radical come into resonance in spectrometer operating at 9.5 GHz (g = 2.0026)?
 - (1) 0.34 T
- (2) 0.68 T (3)
 - 1.02 T
- (4) 0.17 T

P.T.O.

	(1)	CH₄	(2)	H ₂ O	(3)	C ₆ H ₆	(4)	Cl_2
41.	Whi	ich one of the	follov	wing compo	ounds	forms (3c - 2e	e) bo	nd?
	(1)	XeF_2	(2)	$\mathrm{Al_2Cl_6}$	(3)	$Mg(CH_3)_2$	(4)	Be(NO ₃) ₂
42.	wate	er. But a very	small ties w	amount of	two c	composes to a compounds (A) d by passing t	and	(B) are also
	(1)	NO and H ₂ N	1 ₂ O ₂		(2)	NO and HNO	3 .	
	(3)	N ₂ O and NO	2		(4)	NH ₃ and N ₂ O		
43.	The	laughing gas	can l	be prepared	d fron	1 HNO ₂ by add	ling :	
	(1)	SO_2	(2)	NH ₂ OH	(3)	$\mathrm{H_2O_2}$	(4)	Fe ²⁺ salt
44.	Out	of the followi	ng dia	atomic mol	ecule	s, the parama	gneti	c ones are
		Be ₂ (b) B ₂ (c) C					D	o ones are
	(1)	Be ₂ B ₂ and 0	C_2 , N	2	(2)	B ₂ , C ₂ , N ₂ ar	nd C	2
	(3)	C ₂ , N ₂ , O ₂ ar	nd C	· }	(4)	B_{2} , O_{2} , C_{2}^{+} ,	C-2	_
	Pick	the correct cl	hoice	out the ab	ove fo	ur choices		
					×			

11

40. Which of the following molecule will show pure rotational spectrum?

- **45.** Which one of the following reactions saves us from the damaging effect of solar u.v. radiations?
 - (1) $O_2 + h v \rightleftharpoons 2O_2$
 - (2) $O_3 + h_U = O_2 + O$ $O + O_2 \rightleftharpoons O_3$
 - (3) Chloro fluoro carbon + $hv \rightleftharpoons Cl^{\bullet}$ $Cl^{\bullet} + O_3 \rightarrow ClO + O_2$
 - (4) $HClO + hv \rightleftharpoons OH^{\bullet} + Cl^{\bullet}$ $Cl^{\bullet} + O_3 \rightleftharpoons ClO^{\bullet} + O_2$
- 46. Iodine in (A) oxidation state is easily stabelized by complexation as in [ICl₂]⁺¹ ion which is stable in concentrated HCl. In concentrated and strong acids [I₂]⁺ is (B) cation dimerzing to (C) species (I₄)⁺. Here (A), (B) and (C) are respectively:
 - (1) 1, unstable, paramagnetic
 - (2) + 1, paramagnetic, diamagnetic
 - (3) 1, diamagnetic, paramagnetic
 - (4) + 1, diamagnetic, stable
- **47.** H_3PO_3 and $H_3A_5O_3$ are :
 - (1) both tribasic
 - (2) H₃PO₃ dibasic and H₃A₅O₃ tribasic
 - (3) H₃PO₃ tribasic and H₃A₅O₃, dibasic
 - (4) Both are dibasic in which H⁺ is bonded to P and As

- **48.** It is possible to prepare a complex (Octahedral or tetrahedral) of d⁶ metal ion with a magnetic moment of 2.6 B.M. under the following conditions. Which one of the following alternative is correct?
 - (1) An Octahedral complex of d6 metal ion with weak field legands.
 - (2) A tetrahedral complex of d⁶ metal ion with weak field legands.
 - (3) An Octahedral complex of d6 metal ion with strong field legands.
 - (4) A tetrahedral complex of d⁶ metal ion with strong field legands.

(10 D_q >> Pairing energy)

49. The structures of two forms of N_2F_2 out of the following four structures are :

$$F = N$$
 F
(B)

$$F$$
 $N = N$
 F
 (D)

(N-F bonds in different planes)

Pick the correct choice out of the following ones

(1) (A) and (B)

(2) (A) and (C)

(3) (B) and (C)

(4) (C) and (D)

50. On hydrolysis (CH₃ - Li)₄ gives :

(1) Li OH + CH,

- (2) $C_2 H_6 + Li CH_3 + Li (OH)$
- (3) CH₃ OH + Li OH + Li H
- (4) C₂ H₅ OH + Li OH + Li H

- 51. Uranium, Thorium and Plutonium dissolve in:
 - (1) Conc. HNO₃

(2) Conc. HNO₃ + F ions

11.

- (3) Conc. HNO₃ + NaCl
- (4) Dil. HNO₃
- 52. Transition metal ions form complexes with N₂ molecules in two modes N of linkages. (1) M–N \equiv N (end on) and (2) M \leftarrow | | | (side on). The bond N

strenghts of these M - (N2) bonds are (Relative strengths):

- (1) Both weak
- (2) Both strong
- (3) End-on stronger than side- on
- (4) Side-on stronger than end- on
- 53. (Ln)²⁺ ions are largely coloured while (Ln)³⁺ are not. The colour of (Ln)²⁺ is due to:
 - (1) $f \rightarrow f$ transition
 - (2) $d \rightarrow d$ transition
 - (3) $f \rightarrow d$ transition
 - (4) Charge transfer from anions or solvent to (Ln)2+

- **54.** The reason for (A) P_2 which is similar to N_2 molecule is not stable because (what is (A)):
 - (1) The bond energy of three (P P) bonds is more than (P P) triple bond as opposed to N

 N bond energy which is more than three (N - N) bond energy (A - gaseous)
 - (2) Lattice energy of P P is more than N N bond energy (A = Solid state)
 - (3) Lone pairs of electrons in $\ddot{P} \equiv \ddot{P}$ is kinetically more reactive than those present on N_2 in $\ddot{N} \equiv \ddot{N}$ (A solid state)
 - (4) Kinetically P P bond is more reactive than N N bond (A = liquid)
- 55. The following three reactions give one common molecule (A). What is (A)?

(a)
$$(NH_4)_2 Cr_2 O_7 \xrightarrow{\text{thermal}}$$
 decomposition

(b)
$$NH_3 + Br_2 \longrightarrow$$

(c)
$$NH_3 + CuO \xrightarrow{\text{High}} Temperature}$$

Pick the correct choice out of the following:

(1) N₂O

(2) NO

(3) N₂ (nitrogen)

- (4) NH₃
- 56. The magnetic moment of Mn²⁺ (d⁵ case) complexes of weak field legands (Octahedra and Tetrahedral) is:
 - (1) Very close to spin only value
 - (2) Spin only value plus a large orbital contribution
 - (3) Spin only value plus variable orbital contribution
 - (4) Spin only value of one electron

57. What is (A) in the following reaction:

$$4 \text{ HNO}_3 + P_4 O_{10} \xrightarrow{-10^{\circ}\text{C}} 2N_2 O_5 + (A)$$

(1) H₃PO₄

(2) H₃PO₃

(3) HPO,

(4) P₂O₃

58. What is (A) in the following reaction:

Na NO₃ + Na₂O
$$\xrightarrow{\text{Silver}}$$
 (A) for two days

- (1) N₂O₅ + Some Sodium Salt (2) No reaction
- (3) Na, NO, (orthonitrate)
- (4) $N_2O_3 + N_2 + Na_2 NO_2$

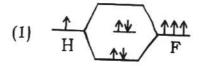
59. $(N_5)^+$ cationic species exists in compounds $[N_5^+]$ $[5b_2 F_{11}]^-$ or in $(N_5)^+$ $[A_5F_6]^-$. The structure of $(N_5)^+$ in these compounds is :

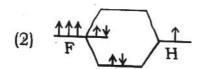
- linear (1)
- Angular (2)
- (3) Cyclopentadienyl type
- Square planar with N N+ side chain

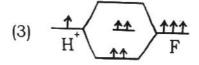
60. HF in liquid state self - ionizes as:

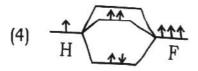
- HF (liq) \rightleftharpoons H⁺ + F⁻ (1)
- 2HF (liq) \rightleftharpoons (H₂F)⁺ + F (2)
- (3) 3HF (liq) \rightleftharpoons (H₂F)⁺ + (HF₂)⁻(Solvated)
- (4) 4HF (liq) \rightleftharpoons (H₃F₂)+ (HF₂)

- **61.** Arrange the hydrides CH₄, H₂O, Ge H₄, H₂Se in order of increasing acid strength. Which one is correct order in the following given orders:
 - (1) CH₄ < H₂ Se < H₂O < GeH₄
 - (2) $CH_4 < GeH_4 < H_2O < H_2$ Se
 - (3) GeH₄ < CH₄ < H₂ Se < H₂O
 - (4) GeH₄ < CH₄ < H₂ Se < H₂O
- 62. In octahedral complexes of d¹ metal ions, the net total energy of the d- electron in the complex as compared to that in the free ion :
 - (1) increases with respect to unbonded state
 - (2) varies with the nature of legands, sometimes increase and some times decreases
 - (3) remains the same
 - (4) Increases with respect to a state when only <u>metal bond energy</u> is considered with no <u>electronic effects</u> of the legands (i.e. repulsion due to legand <u>electrons</u>)
- 63. According to M.O. theory, the bond order of diatomic molecules can be (A) which is not so according to valence bond theory. Here (A) is:
 - (1) Integral


(2) Two


(3) Three


(4) Fractional


- **64.** Lewis acidity of silicon tetrahalides [Si F₄, SiCl₄, SiBr₄, SiI₄] decreases in the order :
 - (1) $\operatorname{Sil}_{4} > \operatorname{SiBr}_{4} > \operatorname{SiCl}_{4} > \operatorname{SiF}_{4}$
 - (2) $Sil_4 > SiCl_4 > SiBr_4 > SiF_4$
 - (3) $SiF_4 > SiCl_4 > SiBr_4 > SiI_4$
 - (4) $SiF_4 > SiBr_4 > SiI_4 > SiCl_4$
- 65. Arrange the single bond energy of the following fluorides in increasing order: N F, P F, As F, Sb F.
 - (1) N F < Sb F < As F < P F
 - (2) Sb F < As F < P F < N F
 - (3) As F < Sb F < P F < N F
 - (4) As F < N F < P F < Sb F
- **66.** The oxidizing and the reducing agent in the following redox reactions respectively are:
 - (a) $2H CuCl \rightleftharpoons Cu + Cu^{2+} + 4CI + 2H^{+}$
 - (b) $Cl_2 + 2OH^- \rightarrow ClO^- + Cl^- + H_2O$
 - (c) $Ca CO_3 \rightarrow CaO + CO_2$
 - (1) (Cu⁺, Cu⁺¹), (Cl⁰ Cl⁰), none
 - (2) (H⁺, Cu⁺), (Cl⁰,OH⁻), (Ca²+, O₃²-)
 - (3) (Cu⁺, Ct), (Cl^o,OH⁻), (Ca²⁺, CO₃²⁻)
 - (4) (Cu⁺, Cl), (Cl⁰,OH), (Ca²⁺, O²⁻)

- 67. In compounds containing X H and X D bonds, which one (X H or X D) will be stronger and why?
 - (1) (X D) because of higher contribution of covalency in X H bond
 - (2) (X -H) because of greater mobility of H compared to D
 - (3) (X H) because of its lower zero point energy compared to that of X-D
 - (4) (X D) beacuse of its lower zero point energy compered to that of X-H
- 68. Which one of the following molecules will show optical isomerism?
 - (1) [Co (en)₃]³ (octahedral)
 - (2) [Mn(CN) (NO₂) (H₂O)(NH₃)] (tetrahedral)
 - (3) [Co (en) Cl₃Br] (octahedral)
 - (4) Cis [Co (en)₂ Cl₂] (octahedral) (trans)
- 69. What happens when in the absence of air B₂ H₆ is heated to 100°C?
 If:
 - (1) decomposes to B and H₂
 - (2) explodes and gives a number of products
 - (3) forms B₁₀ H₁₄
 - (4) forms (BH₄)-, B + H₂
- 70. Which one of the following M, O.'s of (HF2) is correct?

71.	Wha	t product one forms by absorb	ing r	nitrous acid fumes in Na ₂ CO ₃		
		eous solution ?	,			
	(1)	Na NO ₃	(2)	$\mathrm{Na\ NO}_{2}$		
	(3)	$\mathbf{H_2} \; \mathbf{N_2} \; \mathbf{O_2}$	(4)	$NO + N_2O$		
72.	 72. SO₃, exists in three forms which have the molecular formula SO₃, S₃ O₆ and (SO₃)_n. Their structures belong to three of the following ones. The structures of these forms respectively are. (a) atomic, (b) molecular (c) oligomeric (linear, cyclic, cluster (d) Polymer (one dimensional chain) Which one out of the three you will expect to be a gas your choice are the following. Pick up the right choice? (1) monomeric molecular, Oligomeric (Chain), polymer (linear) (SO₂ (2) atomic, polymeric (Cyclic), 3- dimensional polymeric (S₃O₉) (3) molecular, polymer (Cyclic), polymer (3 - dimensional) (S₃ O₉) 					
	(4)		ner (d	chain), polymer (3-dimensional).		
73	en (1)	ergy and the element with the	leme lowe (2)	B and Pb		

- 74. Arrange the following oxygen molecular ions and the molecule in order of increasing bond energy or in decreasig order of (O-O) bond length. The molecular ions and the molecule are: O₂²⁺,O₂⁺,O₂,O₂ and O₂²⁻. The possible orders are given below. Choose the correct one:
 - (1) $O_2 < O_2^+ < O_2^- < O_2^{2+} < O_2^{2-}$
 - (2) $O_2^{2^-} < O_2^- < O_2^- < O_2^+ < O_2^{2^+}$
 - (3) $O_2 < O_2^- < O_2^{2-} < O_2^+ < O_2^{2+}$
 - (4) $O_2^- < O_2^{2-} < O_2 < O_2^{2+} < O_2^+$
- **75.** What is (A) in the following equation (Ti₃ N₄)₅ + H₂O \rightarrow (A) + Ti O₂ Here A is:
 - (1) N H₂OH

(2) NH₃

(3) $N_2O + NH_3$

- (4) $N_2 H_4 + H_2 O_2$
- 76. C₂, BN, Be O and Li F molecules are isoelectronic and their valence electron orthital energies are quite different. The difference between orbital energies of A and B of AB type molecules increases from carbon to Li F. It implies that the degree of overlap of the parent orbitals (A and B):
 - (1) decreases
 - (2) Increases
 - (3) Zero in C2 and infinite in LiF
 - (4) Zero in Li F and infinite in C2

- 77. For a given legand, the order of metal ions producing increasing 10Dq value for octahedral complexes is (A) and for a given metal ion, the order of legands producing increasing 10Dq for octahedral complexes is (B). Here (A) and (B):
 - (1) Both (A) and (B) constant
 - (2) (A) changes and B = constant
 - (3) (A) constant and B = changes
 - (4) Both (A) and (B) = changes
- 78. In Li, N, nitrogen is present as (A) and (B) than Li ion. Pick up the correct alternative from the following alternatives. Here (A) and (B) respectively are:
 - (1) N_2^- , N_2^- is greater than
- (2) N³⁻, N³⁻ is greater
- (3) N³-, N³- is smaller
- (4) N_3^-, N_3^- is smaller
- 79. The third conization energy of the first transition series show a sharp drop at Fe2+, (3d6) ion. The reason for this drop is due to:
 - Increased electron-electron repulsion energy caused due to pairing of d- electrons
 - (2) drop in effective nuclear change
 - the presence of large number of electrons (3)
 - increased electronegativity of Fe2+ ion (4)
- 80. The following two equations are given:
 - Na (g) \rightleftharpoons Na⁺(g) + e⁻..... Δ H = + 495 KJ/mol
 - Cl⁻(g) \rightleftharpoons Cl (g) + e⁻ Δ H = 348.9 KJ/mol

The reactions (a) and (b) respectively are known as:

- Electron affinity of sodium and electron affinity of Cl- ion
- Ionization energy of sodium and Ionization energy of Cl- ion
- Ionization energy of sodium and Electron affinity of Cl- ion (2)
- Electron affinity of Na and Ionization energy of Cl-(g) (3)
- (4)

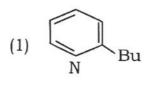
- **81.** Which of the following species is formed when both atoms / groups are eliminated from the same carbon?
 - (1) carbocation

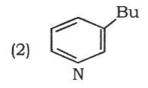
(2) carbene

(3) carbanion

- (4) ketene
- **82.** The stereochemical outcome of the SN² reaction on an optically active substrate will be:
 - (1) Inversion in configuration
 - (2) Retention in configuration
 - (3) Partial racemization
 - (4) Complete racemization
- **83.** The designation \underline{D} or \underline{L} before the name of a monosaccharide indicates :
 - (1) The length of the carbon chain in the sugar
 - (2) the direction of rotation of polarized light
 - (3) the position of the -OH group on the carbon chain next to the primary alcohol group
 - (4) The position of the chiral carbon atoms in the carbohydrate
- 84. The S_{N^2} mechanism best applies to the reaction between :
 - (1) cyclopropane and H2
 - (2) methane and Cl
 - (3) 2-chloro 2 methylpropane and dilute OH-
 - (4) 1 chlorobutane and aqueous NaOH
- 85. List the following compounds in order of decreasing acidity:

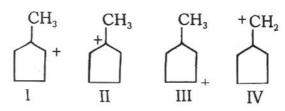
FCH₂CH₂OH CH₃CH₂OH CH₃CHOH ClCH₂CH₂OH
(II) (III) (IV)


(1) I > III > IV > II


(2) III > IV > I > II

(3) III > I > IV > II

(4) I > IV > II > III


86. When heated with n- butyl lithium at 100° C pyridine forms:

(4)
$$\bigcup_{N}^{Bu}$$
 Bu

- 87. Conversion of cyclohexanone oxime to caprolactam can be effected by:
 - (1) Beckmann rearrangement
- (2) Hofmann rearrangement
- (3) Claisen rearrangement
- (4) Claisen condensation
- 88. The decreasing order of stability of the following carbocations is:

(1) I > II > III > IV

(2) II > III > I > IV

(3) II > I > III > IV

- (4) III > I > II > IV
- 89. Bimolecular reduction of acetone in the presence of Mg amalgam in ether gives:
 - (1) Isopropanol

(2) Propane -1, 2 - diol

(3) Pinacol

(4) Propane

90. Which of the following statements is wrong about citral?

- (1) The molecule has two double bonds
- (2) An aldehyde group is present
- (3) One of the products obtained from ozonolysis of citral is acetone
- (4) It is an opticlly active compound

91. Proteins on heating with conc. HNO₃ produce yellow colour. This is known as:

(1) Millon's test

- (2) Hopkin's test
- (3) Ninhydrin test
- (4) Xanthoproteic test

92. The reagent 'X' in the following reaction is:

$$CH_3 COCH_3 \xrightarrow{X?} (CH_3)_2 C - CH_2 COCH_3$$
OH

(1) HC1

(2) Ba(OH)

(3) H₂SO₄

(4) NaBH

93. When heated with acetic anhydride in pyridine solution, α -aminoacids are converted into :

- (1) RCH NHCOCH
- (2) RCH COCH₃
- (3) RCH COCH₃
- (4) RCH NH

94. Give the product of the following reaction:

$$\begin{array}{ccc}
& + & CH_3CCl \xrightarrow{CH_3OH} & ? \\
& & & & & & & ?
\end{array}$$

- (1) 2 acetylpyridine
- (2) 3 acetylpyridine
- (3) 4 acetylpyridine
- (4) CH₃COCH₃

95. The decreasing order of reaction rate of the following benzyl alcohols with HBr is:

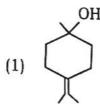
(I) C₆H₅CH₂OH

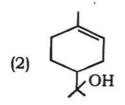
- (II) p-NO₂C₆H₄CH₂OH
- (III) p-CH₂OC₆H₄CH₂OH
- (IV) p-ClC₆H₄CH₂OH

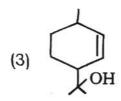
(1) III > IV > I > II

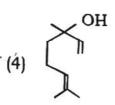
(2) III > I > IV > II

(3) III > I > II > IV

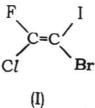

(4) I > III > IV > II

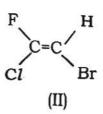

96. In the following reaction:

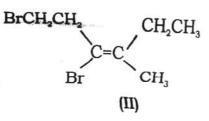

the major product is:


Br
$$CH_2CH_2CH_3$$
 (2) $CH_2CH_2CH_3$ (2) $CH_2CH_2CH_3$ (3) $CH_2CH_2CH_2Br$ (4) $CH_2CH_2CH_3$

97. One of the following structures is that of α - Terpineol. Which one ?







- 98. The major product obtained on treatment of 2-bromobutane with alcoholic KOH is:
 - (1)1-butane

- (2) cis 2 butane
- trans 2 butane
- (4) 2 butanol
- **99.** Which of the following alkenes have \underline{E} configuration ?

(1) I and II

(2)I and III

(3)II and III

- (4) All I, II and III
- 100. Rapid interconversion of α -D- glucose and β -D glucose in aqueous solution is known as:
 - (1) inversion

(2) epimerization

(3) racemization

(4) mutarotation

(1) HF

addition to an alkene?

defi	cient oxygen atom ?								
	(1) Baeyer - villiger rearrangement								
(2)	(2) Pinacol - pinacolone rearrangement								
(3) Hofmann rearrangement									
(4)	Wolff rearrangement								
103. Rar	aks the basicities of the following compounds:								
(A)	3								
(B)	CH ₃ NH ₂								
(C)	$(CH_3)_4N^+NO_3^-$								
	B > C > A (2) $C > A > BC > B > A$ (4) $B > A > C$								
	C > B > A (4) $B > A > C$								
(1) (2) (3) (4)									
105. Wh	nat is the IUPAC name of the following compound?								
(1) (2) (3)	F H ₃) ₂ C CO ₂ CH(CH ₃) ₂ 1 Isopropyl 2-fluoro-3-methylbutanoate 1-Methylethyl 2- fluorobutyrate 2- Fluoroisopropyl isopropanoate 1-Methylethyl 2-fluoro - 2 - methylpropanoate								

101. Which one of the following is most likely to undergo free-radical

102. Which one of the following rearrangements involves an electron

(2) HC1

(3) HBr

(4) HI

106. Identify the compounds which fail to undergo Friedel-Crafts reaction:

Naphthalene Pyridine Aniline Phenanthrene (I) (II) (III) (IV) (1)II and III (2)II, III and IV (3)I, II and IV (4)II and IV

- 107. Which of the following is a false statement about the alkaloid piperine?
 - (1) This occurs in black pepper
 - (2) The molecule has a methylenedioxy group
 - (3) It is a secondary amide
 - (4) Piperine can be easily synthesized starting from catechol
- 108. Teflon is obtained by polymerization of the monomer:
 - (1) $CH_2 = CF_2$

(2) $CF_2 = CF_2$

(3) $CH_2 = CHF$

- (4) $CH_2 = C (CH_3) COOCH_3$
- 109. Stereochemically controlled polymers can be made by polymerization process involving:
 - (1) Anionic mechanism
- (2) Cationic mechanism
- (3) Coordination mechanism
- (4) Free radical mechanism
- 110. Which one of the following is classified as a dye from xanthen group?
 - (1) Malachite green
- (2) Methyl orange

(3) Indigo

(4) Fluorescein

111. Arrange the compounds in order of decreasing reactivity toward electrophilic substitution:

(1) B > D > C > A

(2) A > C > D > B

(3) B > C > D > A

- (4) C > D > A > B
- 112. Which of the following groups are meta-directing in electrophilic aromatic substitution in benzene ring?

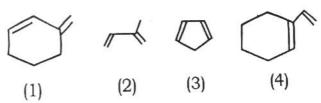
$$-CONH_{2} - NHCH_{3} - NHCOCH_{3} - N(CH_{3})_{3}$$
(a) (b) (c) (d)

- (b)
- (c)

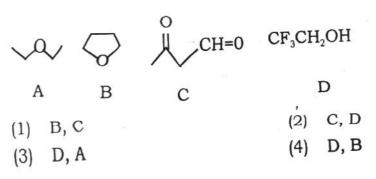
(1) a, c

(2) b, d

(3) a, d


- (4) c, d
- 113. In the reaction sequence,

Naphthalene
$$\xrightarrow{\text{air}}$$
 ? $\xrightarrow{\text{NH}_3}$? $\xrightarrow{\text{NaOCl}}$ Q


the end product Q is:

114. Which reactive intermediate is involved in the following reaction?									
2-	2- Methylbutane $\xrightarrow{\text{Br}_2}$ 2- Bromo - 3 - methylbutane								
			he maj	or product)					
(1)	The state of the s			A tertiary radical					
(3)	A secondary c	arbocation	(4)	A tertiary ca	rbocation				
115. Th	115. The number of chiral carbon atoms present in the D-glucopyranose molecule is:								
(1)	three (2	2) four	(3)	five	(4) six				
116. Na;	116. Naphthalene undergoes nitration with a mixture of conc. HNO ₃ and H_2SO_4 at 50°C to give mainly:								
(1)	1-Nitronaphtha	alene	(2)	2-Nitronaph	thalene				
(3)	1,3-Dinitronap	hthalene	(4)	1,8-Dinitron					
117. Iden a st	ntify the most rearong base :	active compo	ound to	ward dehydro	halogenation by				
(1)	1-Bromopentar	ne	(2)	2-Bromopent	ano				
(3)	3-Bromopentar	ne							
(4) 2-Bromo-2-methylbutane 118. When aniline is heated with glycerol in the presence of sulphuric acid and nitrobenzene, it gives quinoline. This reaction is called: (1) Chichibabin reaction									
(2)	Skraup synthes		18						
(3)	Fischer synthes								
(4)	Bischler - Napie		esis						

119. Which of the following conjugated dienes would not react with a dienophile in Diels-Alder reaction?'

120. Two of the following four compounds are more acidic than methanol. Which ones?

121. Serum is the fluid:

- Supernated from the blood (1)
- Separated from the clotted blood (2)
- Separated from the unclotted blood (3)
- Separated from the mixture of clotted blood and unclotted blood (4)

122. Standard addition calibration is used:

- (1) to obtain precised result
- (2) to obtain accurate result
- to overcome sample matrix effects
- (4) to enhance sensitivity of the result

123. In the following operation

 $\frac{35.63 \times 0.581 \times 0.05300}{1.1689} \times 100\% = 88.5470578\%$ the answer with significant figures is :

(1) 88.55%

(2) 88.547%

(3) 88.54705%

(4) 88.5470578%

124. The results of an analysis is 36.97 g compared with the accepted value of 37.06 g. The relative error in parts per thousand (ppt) is:

(1) - 2.0 ppt

(2) -2.1 ppt

(3) - 2.3 ppt

(4) - 2.4 ppt

125. How many g/mL of NaCl are contained in a 0.250 M solution?

(1) 0.0146 g/mL

(2) 0.146 g/mL

(3) 14.6 g/mL

(4) 0.00146 g/mL

126. The pH of 10-9 M HCl is:

- (1) 9.00
- (2) 0.90
- (3) 6.00
- (4) 6.99

127. The pH of a solution prepared by adding 25 ML of 0.10 M sodium hydroxide to 30mL of 0.20 M acetic acid (pK = 476) is:

- (1) 4.68
- (2) 4.61
- (3) 4.90
- (4) 5.7

128. The correlation between distribution ratio (D) and distribution coefficient (KD) can be represented as:

(1) $D = K_D/\{1 + Ka/[H^+]\}$ (2) $K_D = D/\{1 + Ka/[H^+]\}$

(3) $K_D = D/\{ Ka/[H^+] \}$

(4) $D = K_D / \{ Ka/[H^+] \}$

129. Craig counter current distribution involves:

no extraction

single extraction (2)

Sucessive extractions (3)

solute dissolution (4)

130. The van Deemter equation is:

(1) HETP =
$$A + \frac{\overline{\mu}}{B} + \frac{C}{\overline{\mu}}$$

(2) HETP =
$$A \overline{\mu} + B + \frac{C}{\overline{\mu}}$$

(3) HETP = A +
$$\frac{B}{\mu}$$
 + C $\bar{\mu}$ (4) HETP = $\frac{A}{B} + \frac{1}{\mu} + \frac{\bar{\mu}}{C}$

(4) HETP =
$$\frac{A}{B} + \frac{1}{\overline{\mu}} + \frac{\overline{\mu}}{C}$$

131. The retention time in column chromatography can be defined as:

the time required for the mobile phase to traverse the column

the time required for the stationary phase to elute the analyte (2)

the time required for the stationary phase to bind the analyte

the time required for the analyte peak to appear

132. The unit of specific absorptivity is:

(1) Cm⁻¹ mol⁻¹ L

(2) Cm⁻¹ g⁻¹ L

(3) Cm-1 mol L-1

(4) Cm⁻¹ g L⁻¹

133. In spectrophotometric analysis, the minimum relative error in the concentration occurs when percent transmittance measured is:

(1) 20%

(2) 80%

(3) 37%

134. Wh (1) (3)	ich is main ingradiant of ferr oxine o-phenaothroline	roin ? (2) (4)	dithiozone ferrocene				
(1) (3)	e mole of KBrO ₃ in bromate - one mole Br ₂ fifteen mole Br ₂	(2) (4)	four mole Br ₂				
136. Met an (1) (2) (3) (4)	tal - EDTA complexation is a acid indicator if you do not he Yes No Can not say wait till arrangement of met	ave su					
137. Chlobeca (1) (2) (3) (4)	 137. Chloramine-T and Eriochrome Black-T are used in chemical analysis because: (1) both are indicators (2) both are redox reagents (3) one is redox reagent and other is an indicator 						
(1) 139. Whice (1) (2) (3) (4)	ch one acts as a sink of CO_2 and CO_2 and CO_2 River Ch reaction represents the process $CO_2 + H_2O + h_U = (CH_2O) + O_2$ $CH_2O) + O_2 = CO_2 + H_2O + O_2$ $CH_4 + 2O_2 = CO_2 + 2H_2O$ $CO_2 + 4FeO = 2Fe_2O_3$	gas? (3) ocess O_2 CO_2	Glaciers (4) Land				
(1)	altitude range of troposphere 0 - 11 Km 50 - 85 Km	(2)	11 - 50 Km 35 - 500 Km				

141. Aitken particles are actually:

_	(1)	aerosols with	h diam	neter mo	re than C	0.2 μ				
	(2)	aerosols with diameter less than 0.2 μ aerosols with diameter more than 2.0 μ								
	(3)	aerosols wit	derosols with diameter less than 2.0 μ							
	(4)	aerosois wit	II Ulali	icter ies.	5 (11411 =			•		
1	42. Van	Allen belts a	re:	14 : :	aniging n	articles encir	cling	the ear	th	
	(1)	Consisted o	f two t	pelts of 10	onizing p	erticles encir	cling	the mo	on	
	(2)	Consisted o	f two t	beits of it	onizing p	of ionizing par	rticle	encircli	ng	
	(3)	.1								
	(4)	the sun	f a sir	ale helt	of ionizin	ng particle en	circli	ng the		
	(4)	uncharged	partic	ulates	0. 10					
1	43. Wh	ich one does	not a	ffect the	Ozone d	etoriation?	(4)	и		
	(1)	НО	(2)	NO	(3)	0	(4)	112		
]	144. Atmospheric window which do not allow to escape of infrared radiation amitting from the earth is in between:									
	(1)	4000 — 80			(2)	8000 - 160				
	, ,	16000 - 2			(4)	20000 - 24	000 r	ım		
	(3)				• 6					
	145. Wh	nich one is m	an cu	lprite to	contribu	te greenhous	e effe	ct?		
			(2)	O_3	(3)	CFC	(4)	CO_2		
	(1)	CH ₄	(-)	3						
	146. El	Nino is due	to:	10 10 10 10 10 10		Danific ocean	Ìø			
	(1)	warming o	of wate	rs of the	Eastern	Pacific ocean				
	(2)	and in a of	waters	s of the b	castern r	acine occur				
		ina (of wate	ers of the	Westerr	1 Pacific occu	n			
	(3)	ling of	water	s of the	Western	Pacific ocean				
	(4	,								
	147.T	he pH of sea	water	is consta 8.1	nt as : (3)	6.5	(4) 10.2		
	(1) 7.0								
		,	•		36					

148. Wh	ich metal is re	espon	sible for the	e mar	nifestati	on of itai ita	i diseases ?			
(1)	As	(2)	Pb	(3)	Hg		Cd			
149. Qua	adrivalent cer	ium i	s best oxid	ising	reagent	beacause:				
(1)	it is easily available									
(2)	its aqueous solution is highly stable at high temperature									
(3)	it is cheaper	it is cheaper								
(4)	(4) it does not require any primary standard for standardization									
150. Oxi	ne is a precip gent quantitat	itatin ively	g reagent. at trace lev	How el?	can you	u easily dete	ermine this			
(1)	Precipitation	metl	nod	(2)	Spectr	ophotometr	ric method			
(3)	Conductome	etric r	nethod	(4)	BrO ₃	- Br- reacti	on method			
	¥									
				,		*				

ROUGH WORK रफ़ कार्य

ROUGH WORK एफ कार्य

United.

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली-काली बाल-प्वाइंट पेन से ही लिखें)

प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई 1. प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।

परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त,* लिखा या सादा कोई भी खुला कागज साथ 2.

में न लायें।

उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। 3. केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।

अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें। 4.

- उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्घारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानीं 5.
- ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्नपुस्तिका पर अनुक्रमांक और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमित 6.

उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित 7.

साधन का प्रयोग माना जायेगा।

प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये 8. निर्देशों के अनुसार पेन से गाढ़ा करना है।

प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने 9.

पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।

ध्यान दें कि एक बार स्थाही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो संबंधित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य 10.

11. रफ कार्य के लिए प्रश्न-पुंस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ

12. परीक्षा के उपरान्त केवल ओ एम आर उत्तर-पत्र परीक्षा भवन में जमा कर दें।

13. प्रीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी। यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित

दंड का/की, भागी होगा/होगी।