1984

	Question Booklet No
(To be filled	by the candidate by blue/black ball-point pen)
Roll No.	
Roll No. (Write the digits in words)	
Serial No. of OMR Answer S	et
Day and Date	(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the OMR Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR sheet No. on the Question Booklet.
- 7. Any changes in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfairmeans.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गये हैं।]

Total No. of Printed Pages: 14

No. of Questions: 150

ime :	2 Hours]					I	Full Marks: 45
Note:					Each question can		
	One mark wi	ll be	deducted for	each	incorrect answ	er. Z	Zero mark will b
			attempted questio				
	(ii) If more than on	e alte	rnative answers	seem	to be approximate	e to t	he correct answer
	choose the closed		7.				
1.	The cell wall of dia						
	(1) Protein				Silica	(4)	Galactoside
2.	Iodine is commerci	ally	obtained from :				
	(1) Gelidium				Gracilaria		
3.	Which of the follow	ving	classes of fungi	sho	ws highest degre	e of	degeneration of
	sexuality?						
	(1) Phycomyces	(2)	Deutromycetes	s (3)	Basidiomycetes	(4)	Ascomycetes
4.	Which among the fe	ollov	ving is called pe	eat n	noss?		,
	(1) Pellia	(2)	Sphagnum	(3)	Funaria	(4)	Porella
5.	Microsporangia and	d ma	crosporangia ai	re fo	rmed in the same	e stra	obilise of
	(1) Selaginella	(2)	Dryopteris	(3)	Equisetum		Lycopodium
6.	Which one of the fo	Ilon	dan 1 1 1		1 1 1 .		
	(1) Carotenoids Which of the follow	(2)	Fucoxanthin	(3)	Chlorophylls	A : (A)	DI
7.	Which of the follow	ing	fungus is the m	aine	ource of vitemin	(4)	Phyeocyanin
	(1) Rust fungi	(2)	Yeast	(3)	Bread Mould	5 ?	
8.	Sporogonium of Ric		s differential d	داما	ource of vitamin Bread Mould :	(4)	Smut fungi
	(1) Seta and capsul	e	o differentiated				
	(3) A simple cansu	le.		(4)	Foot, seta and ca	psul	6
0	When sporangia in (1) Leptosporangia	- 60=	- 1 .	(4)	Foot and sita on	ly	
9.	(1) Lentesperancia	a iei	n develop from	a sir	igle initial cll, it is	80 11	
	(1) Leptosporangia	ato	1	(2)	Eusporangte	વા	ed :
	(3) Heterosporangi	ale		(4)	Asporangia		
10.	Which of the follow (1) Simple filament	ing a	algal thallus is co	onsi	dered as high		
	(1) Simple filament	tous		(2)	Colonial Colonial	red a	
	(3) Heterotrichous			(4)	Siphonaceou	·u /	
	(3) Heterotrickov			(-)	- priorace()[[
		Ÿ.	(1)				

11.	In which one of the (1) <i>Dictyota</i>	following algae oog (2) <i>Oedogonium</i>		as sexual reprod <i>Chara</i>		on is <i>not</i> found ? <i>Zygnema</i>
12.	Which of the follow (1) Bordeaux mixt (3) 2, 4-D	ving is a fungicide? ure	, ,	D. D. T. Amphicilin		30
13.	Elators are present (1) Selaginella	in the sporogonium (2) <i>Riccia</i>	of:	Marchantia	(4)	Sphagnum
14.	Amphiphloeic siph (1) <i>Ophioglossum</i>	onostele is found in (2) <i>Marsilea</i>		Pteris	(4)	Lycopodium
15.	Isomorphic alterna (1) Fritschiella	tion of generation is (2) Vaucheria		d in : <i>Spirogyra</i>	(4)	Volvox
16.	(1) Autotrophic	f nutrition in Rhizop (2) Parasitic	(3)	Symbiotic	10500000	Saprophytic
17.		ophyte a highest de	egree	e of sporogenous	s tiss	sue sterilization
	is found ? (1) Funaria	(2) Riccia	(3)	Anthoceros	(4)	Marchantia
18.	Gametic meiosis tal (1) Polysiphonia (3) Sargassum	kes place in :		Ulothrix Draparnoldiopsis	S	
19.		llowing spores of Pu	accin	ia is haploid?		
	(1) Uredospore	(2) Teleutospore			(4)	Basidiospore
20.	(1) Bessey	ungi was discovered (2) Robert Hooke	(3)	Saccordo	(4)	Blakeslee
21.	In bryophytes redu (1) Sex organ form (3) Gamete format	ction division takes ation ion	(4)	e at the time of : Spore formation Capsule formation	n tion	
22.	Porphyra is:	inate	(1)	An edible alga A source of iod	line	
23	Potato famine III.	(2) Albugo	(3)	Phytophthora	(4)	Ustilago
	R Kashyap B	(2) Bryology	(3)	Mycology	(4)	Pteridology
2	one	1 1-2	ength	s of visible ligh	ht is	absorbed by
	25. Which one of phycoerythring 420 nm	(2) 610 nm	(3)	660 nm	(4)	540 nm
	(1) 420	(2)				

26.	Ocheate stipules are (1) <i>Citrus</i>		nd in : <i>Ixora</i>	(3)	Polygonum	(4)	Ageratum
27.	Winged petioles are			(2)	0.11: .	(4)	Cilmus
	(1) Aegle	(118) E	Argemone	70 00	Callistemon	(4)	Citrus
28.	Which of the follow	_	•			(4)	Managathac
	(1) Striga	76.	Parthenium	, ,	Loranthus		Nepenthes
29.	Total number of ser						
	(1) 19	(2)		(3)	15	(4)	24
30.	Ligulate leaves are			(0)	F 1 1.	(4)	C
			•	(3)	Euphorbiaceae	(4)	Cycas
31.	Flowers are unisext			(0)	T 1 1:	(1)	D (
	(1) Zingiberaceae			(3)	Euphorbiaceae	(4)	Rutaceae
32.	Floral bud is modifi			(0)	8 1 1	(1)	D: :
	(1) Antigonon		Pisum		Coccinia		Bignomia
33.	Which of the follow	ing	18 not true with	resp	ect to Asteraceae	?	
	(1) Syngenesious s	tame	ens, interior ova	ry ai	nd basal placenta	atior	ı
	(2) Monothecous a	mme tame	ens, superior ova	ry ai	nd axile placenta	tion	l.
	(3) Syngenesious s(4) Superior ovary,	has	al placentation a	its ai	na superior ovar	y	
34.						5	
04.	Pentoxylon was dis (1) Nilgiri Hills	(2)	Raimahal Hilla	ılını (2)	trom : Western Chats	(1)	Catarina I I:II-
35.	Cycas ovule is:	(-)	- mystariai i mis	(3)	Western Ghats	(4)	Satpura Hills
00.	(1) Campylotropou	16		(2)	IIi		
	(3) Orthotropous	.10		60 53	Hemianatropou Anatropous	ıs	
36.	Birbal Sahni Institu	te of	Palaoshotany		-		
00.	(1) New Delhi	(2)	Lucknow		Dehradun	(1)	DI .
37.	, ,					(4)	Bhubaneshwar
01.	Stevia rebaudiana a r (1) Asteraceae	(2)	Solanaceae				
20	200 100 100 100 100 100 100 100 100 100			(3)	Poaceae	(4)	Apiaceae
38.	Branched stamens a (1) Triticum aestivui		ound in :	(2)	61.		
	(3) Ricinus commun			(2)	Calotropis procert	7	
	(A) 6		: 6	(4)	Solanum nigrum		
39.	Which type of embr	yosa	ac is found in Al				
	(1) Monosporic type			(2)	Bisporic typ		
	(3) Tetrasporic type			(4)	Polygonum pe		
40.	In angiosperms, em	oryc	sac represents :	ggecor			
	(1) Megagametopl	yte		$\binom{2}{4}$	Megasporor,		
	(3) Megagamere			(4)	Megasporof3		
	(3)						

41.	Cortical vascular bu	ındl	es are found in :				
	(1) Salvadora				Nyctanthes	(4)	Boerhavia
42.	Perisperm in the sec	eds	develops from:	36 59	J	3 /	
40	(1) Nucellus	(2)	Funiculus		Hilum	(4)	Ovary wall
43.	Pollination through	lev	er mechanism ta	kes j	place in :		
11	(1) Calotropis	(2)	Salvia	(3)	Ficus	(4)	Hydrilla
44.	Sunkened stomata						
	(1) Pinus needles	(2)	Cycas leaves				
A.E.	(3) Gnetum leaves						2 8
45.	Trimerous flowers,						
46.			Liliaceae			(4)	Asteraceae
40.	Tricarpellary, synca					(1)	D
47	(1) Asteraceae			(3)	Liliaceae	(4)	Poaceae
47.	Winged seeds are fo			(2)	D	(4)	Adhatada
4.0	(1) Pinus		(3.0)			(4)	Adhatoda
48.	Parachute mechanis		1,550			/45	T1
			Pappus	(3)	Tepals	(4)	Thorns
49.	The endosperm of P						T 1
	(1) Triploid	(2)	Haploid	(3)	Diploid	(4)	Tetraploid
50.	Gynobasic style is fo	ound	d in the family:			5.5	
	(1) Ranunculaceae	(2)	Papaveraceae	(3)	Apiaceae	(4)	Lamiaceae
51.	"Rate of change of n	uml	per of species per	r uni	it change in habi	tat"	is known as
	(1) Alpha diversity	(2)	Beta diversity	(3)	Gama diversity	(4)	Biodiversity
52.	Which of the follow	ino	has been recooni	zed	as a mega divers	se co	ountry?
JL.	(1) New Zealand	(2)	Austria	(3)	Australia	(4)	Nepal
53.	Taiga represents: (1) Northern coniferente decir	rou	s forests	(2)	Temperate gras	slan	d
						land	
	(3) Temperate decay	ino	is submerged hy	droi	ohyte?		
54.	Which of the lollow	(2)	Azolla	(3)	Vallisneria	(4)	Lemma
5	(1) Eichhornia In India maximum a	(<u>-)</u>	iversity is found	in ·			
	· 1:2 maximite	JIOU	iversity is found	(2)	Western Ghats		
55.					Eastern Ghats		
	(1) Garo Himale	a11 :	icgion				
	(1) Gangetic plain (3) Trans-Himale	us	is used to refer:				
_	The term wrang	of ter	nperature totera	nce			
5		ILLETT .	IL I CONTO				
	(a) Wide in B	of fo	od selection				
	(2) Narrov In	alba	selection				
	(1) Wide range (2) Warrov ran (3) Narrow (4) Narrow		(4)				
	(1)						

57.	Which of the follo(1) <i>Hg</i>		causes the It Cr		isease?	(4)	Cd
58.	The average salir	nity of	sea water is :				
۳0	(1) 35%		3.5%		5.3%	(4)	0.35%
59.	The term "aufwu (1) Plankton		Nekton		Neuston	(4)	Periphyton
60.	Which one of the						
04	(1) Small pox	10 10	Cholera	28 282	Malaria		Tuberculosis
61.	Marginal necrosi (1) SO ₂ toxicity	s and t	ip-burn in le		a diagnostic NO2 toxicit		m of:
	(3) Ozone toxici	ty			Fluoride to	•	
62.	In $PM_{2.5}$ suffix 2.5					,	
	(1) Size of partic (2) 2.5 fold high	ulate n er toxio	natter in mic	ron	ittor		
	(3) Threshold lin	nit of t	oxicity of par	rticulate	matter		
	(4) Effective con	central	ion of partic	ulate ma	atter		
63.	The process of po	odsoliz climate	ation genera			ima a t a	
	(3) Dry tropical				Cold dry cl Tropical ra		s
64.	Which of the foll	owing	form of soil	20 20	•		
	growin:						
	(1) Hygroscopic(3) Capillary wa				Gravitation Echard wat		•
65.	In an ecological	succe	ssion "the	process			rante octablish
	member es m the	ne P	lace" is know Migration	vn as:			
66.					Ececis	(4)	Aggregation
00.	Climax stage is pro (1) High entropy	caom	manuy chara	cterizec	iby:	,	
	(2) K-selection ty	pe spe	cies				
	(3) Species with I(4) Open nutrien	oroad i t cycle	nche speciali	ization			
67.	Which of the follo	-	oair is carree	tlu mata	had 2		
	(1) Sulphur aloxi	ae - 16	eeth		neu ;		
	(2) Fluoride polli(3) Methyl isocya	ution -	Acid rain	ragedy			
	(4) Ozone deplet	ion - Sl	cin cancer				
			N				

68.	J-shaped population growth curve is <i>not</i>(1) House fly(3) Elephant	found in : (2) Cassia tora (4) r-selection type species
69.	The total energy trapped by plants in a g	given time and space is known as: (2) Net primary productivity (4) Turnover rate
70.	Which of the following is the most comm (1) Random (2) Contagious	non pattern of population dispersion ? (3) Regular (4) Uniform
71.	Acid rain has pH: (1) <7.6 (2) <7.0	(3) <5.6 (4) <1.6
72.	The "continuum" concept of vegetation of (1) Individualistic approach (3) Typal approach	
73.	For narrow leaves, the value of Kemp's (1) 0.6 (2) 0.9	constant is: (3) 6.0 (4) 9.0
74.	Which National Park is situated in Uttar (1) Jim Corbett National Park (3) Gir National Park	r Pradesh ? (2) Dudhwa National Park (4) Kaziranga National Park
75.	In a water body, algal bloom is an indic(1) Nutrient enrichment(3) Pollution due to pesticides	(4) Pollution due to metals
76.	A plant growth regulator related to inh (1) Ethylene (3) Jasmonic acid	(4) Gibberellic acid
77.	Function of leg haemoglobin in root no (1) To prevent respiratory O_2 uptake To transfer electrons to N_2	(4) To remove O_2
78.	Diffusion pressure deficit of a fully tury (1) Zero (2) Turgor pressure of cell (3) Osmotic pressure of cell (4) Product of turgor and osmotic pressure of cell (5) Osmotic pressure of cell (6) Product of turgor and osmotic pressure of cell (8) Osmotic pressure of cell (9) Osmotic pressure of cell (1) Osmotic pressure of cell (2) Osmotic pressure of cell (3) Osmotic pressure of cell	
7	9. Which of the following group as synthesis of polypiptide chain? (1) AUA, GAU, LAA (3) AUA, AGU, LAA (6)	(4) UAA, UAC, UGA

80.	The technique and experimental orga	nism used by Calvin for 'Calvin Cycle'			
	were:				
	(1) X-ray technique and <i>Chlamydomonas</i>(2) Radioactive isotope technique and <i>Volvox</i>				
	(3) Radioactive isotope technique and				
	(4) Nuclear magnetic resonance technic				
81.	A pigment concerned with both floral in (1) Florigen (2) Chlorophyll	induction and seed germination is: (3) Plastocyanin (4) Phytochrome			
82.	The bacterial genera carrying out	nitrification, nitration, asymbiotic and			
	symbiotic nitrogen fixation, respectivel	y are :			
	(1) Rhizobium Azotobacter, Nitrosomonas	s and Nitrobacter			
	(2) Nitrosomonas, Nitrobacter, Rhizobium(3) Nitrosomonas, Nitrobacter, Azotobact	and Azotovacter			
	(4) Nitrobacter, Nitrosomonas, Azotobact	er and Rhizobium			
83.	The organic acid which plays a key role				
	(1) Pyruvic acid	(2) Malic acid			
	(3) α-Ketoglutaric acid	(4) Oxaloacetic acid			
84.	The terms, 'apoplast' and 'symplast' wer	re used for the first time by:			
11700000000	(1) Dixon (2) Clark	(3) Munch (4) Fisher			
85.	In split genes, the coding sequence is ca	alled:			
00	(1) Sistrons (2) Operons	(3) Exons (4) Introns			
86.	Which of the following molecule has be				
07	(1) Maltose (2) Cellulose	(3) Amylose (4) Amylopectia			
87.	The pathway that converts fat to carbol (1) Calvin pathway	nydrate is :			
	(3) C ₄ pathway	(2) Glyoxytate pathway (4) Glycolate pathway			
88.	Which of the following plant is an exam	onle of short day plant a			
	(1) Mirabilis jalapa	(2) Beta vulgaris			
	(3) Xanthium strumarium	(4) Lycopersicum escul			
89.	Which of the following nutrient elemen (1) Phosphorus (2) Potassi	ts is most mobile in plan.			
	(1) 11105p1101413 (2) 10143514m	(3) Calcium			
90.	Which of the following enzyme is a mite (1) Aldolase	(3) Calcium (4) Magnesium			
	(1) Aldolase	(2) A mylasa enzyme?			
	(3) Succinic dehydrogenase	(4) Pyruvate dehi			
01	In chloroplast, 'ATP synthase' is located	700			
91.	(1) Inner membrane	(2) Outer mentane			
	(3) Thylakoid men <i>brane</i>	(4) Grana			
	(5) 111/111111111111111111111111111111111				

92.	During EMP pathway, The ATP is product. (1) Oxidative phosphorylation (3) Sustrate level phosphorylation	(2)	Cyclic phospho		
	Which of the following pigment is solub (1) Carotenoids (2) Chlorophylls	le ir (3)	n water ? Phycocyanin	(4)	Xanthophylls
94.	Aptamers are: (1) RNA molecules (2) DNA		Protein		Amino acids
95.	In photosynthetic electron transport, thurea inhibit electron transport between: (1) P ₆₈₂ and Ubiquinone	27	erbicides like $D0$ Cytochrome f and		
	(3) Plastoquinone and Cytochrome f	(4)	Ubiquinone and	d Pla	stoquinone
96.	Which of the following enzymes initiate	s Di	NA replication?		
	(1) DNA polymerase I	(2)	DNA polymera	se II	
	(3) DNA polymerase III		RNA polymera		ab unit of the
97.	The peptidyl transferase enzyme is a	in i	ntegral part of	WIII	en unit of the
	ribosome: (1) 305 (2) 705	(3)	50S	(4)	A site of 30S
98.	Cellulose is polymer of:				
00.	(1) α -1 -Glucose (2) β -D -Glucose	(3)	α-D -Glucose	(4)	β-L -Glucose
99.	Glutathione is a:	<i>(</i> - <i>)</i>	m :: l-		
	(1) Dipeptide(3) Monosaccharide	(4)	Tripeptide Disaccharide		
100.	Ethylene is produced from amino acid: (1) Methionine (2) Tryptophan	(3)	Tyrosine	(4)	Serine
101.	(1) Glyoxalate cycle	(2) (4)	Hexose monop Enter-Duodoro	hosp off pa	ohate shunt athway
	(3) Krebs cycle Under which phase of bacterial grow	th t	acteria increases	s in	size but do not
102.	Under which P			(1)	B 1
	divide? (2) Log	(3,	Stationary	(4)	Death phase
	(1) Lag (2) Log (1) Lag (3) All the following may be methods for t	r th	e inhibition of r	nicro	obial growth by
103	All the following antibiotics except: (1) Antibiotis interfece with cell mem (2) Antibiotis privent the release of except (3) Antibiotis interfece with cell mem (4) Antibiotis privent the release of except (5) Antibiotis in the synthesis of except (8)	bra	ne function		

104.	A bacterial culture	contained 32 ×	106 cells after	2.5 hours of exponential was the initial population
	growth. If the dou	bling time was o	0 min, what	was the initial population
				5 cells (4) 16×10^6 cells
	(1) 20×10^4 cells	(2) 10 × 10° cens	(3) 40 110	(-/
105.	Genome of HIV is: (1) ss DNA	(2) ss RNA	(3) ds DNA	4 (4) ds RNA
106.	A T-series bacteriop	hage can be recog	gnized by its : (2) Rounde	ed shane
	(1) Tadpole shape(3) Irregular shape		(4) Rhomb	
107.	Bacteriophage that	lyse the bacterial o		er infection are termed as:
101.	(1) Systemic	(2) Virulent	(3) Immur	ne (4) Temperate
108.	Endosymbiotic evo	lution is supposed		
	(1) Chloroplast		(2) Mitoch	
	(3) Golgibodies	1.17	50000	hloroplast and mitochondria
109.	Becteroids is a spec			
	(1) Photosynthesis(3) Respiration		(2) Nitrog	en fixation
110.		ving is/are correct		8
110.	A. It is free living			cier .
	B. It is a symbioti			
	C. It is obligate as			
	D. It is obligate ar			
	(1) A and C	(2) A and D	(3) Only (
111.	No. of binding site.	s for O_2 molecules	in a single leg	haemoglobin molecule:
440	(1) 1	(2) 2	(3) 3	(4) 4
112.	The final stage of a (1) Fermentation			n.e
112	The intoxicating st		2002	(4) Diet:11
113.	(1) Ethanol	(2) Phenol	(3) Isopro	DValout
114.	The first known an	(174) 1 3 (20) (2005) 43	(0)	Pyalcohol (4) Methanol
114.	(1) Chlorampheni		in (3) Penici	llin-C
115.		roduction of penic	cillin is:	(4) Penicillin-F
	(1) Nutrient agar		(2) Corn :	steep tid
	(3) Sulfite waste li	iquor	(4) Whey	
116.	In industrial pro	oduction of stre	eptomycin the	
	by-product is: (1) Vitamin 12	(2) Vitamin C	(3) Vitam	$\sin 6 \qquad {}^{\prime}abolile or$
	50. 100	(9)	ī

117.	That it diseases is given to t	hose produced by Ustilago because:
	(1) Its mycelium is black in colour(2) It parasitizes cereals	
	(3) The host becomes completely blac	k
	(4) The fungus produces black sooty s	spore masses
118.	Target board effect' is caused by:	
	(1) Alternaria (2) Colletotrichum	(3) Pyricularia (4) Helminthosporium
119.	(1) Bacteria (2) Virus	d by: (3) Fungi (4) Mycoplasma
120.	Heterothallism means:	
***************************************	(3) Formation of zygospore	(2) Fusion of thalli of different strain(4) Formation of conidia
121.	plantes is caused by ba	acteria ?
	(1) 'Die-back' in citrus	(2) 'Tikka' in groundnut
100	(3) 'Leaf curl' in tomato	(4) 'Stem rot' in maize
122.		ve development of an organ or its parts
	usually due to infection by a pathogen	18:
400		(3) Hyperplasia (4) Hypertrophy
123.	The fungicide 'Bordeaux mixture' was o	(2) A. Millardet
	(1) H. Martin (3) C. A. Peterson	(4) S. D. Garrett
	Phytoalexins are formed in plants:	
124.		(2) Before fungal infection
		(4) All of the above
	the lungicide that is s	ysternic is.
125.	(1) Bavistin (2) Blue-copper-50	(3) Indofil-45 (4) Sulfex
5-823	(1) Davista model that is proposed	to explain the structure of plasma
126.	membrane:	(2) Fluid mosaic model
	Their mellip	(4) 701 (1) (1)
	(1) Unit membrane ystem (3) Artificial mode ystem wing stages of cell	(4) Thin lipid layer concept division the DNA content is doubled? (3) Metaphase (4) Telophase
	Is which of the to (2) Interphase	(3) Metaphase (4) Telophase
127	(1) Prophase ill cell cycle:	t , soprase
	$contence$ (2) G_1 , S , G_2 , M	(3) $S_{1}G_{1}M_{1}G_{2}$ (4) $M_{1}G_{2}G_{3}$
12	8. The scale of Grant Million and a still	by a purine nucleotide is known as:
	(1) Or rapyrimume nucleotide	by a purine nucleotide is known as:
		(2) Frame Shift Flutation
1		(4) Transition rutation
	(3) P (10)	

130.	2	
	(1) Monosomic chromosome	(2) Trisomic chromosome
131.	(3) Polysomic chromosome Allosomes are:	(4) Bisomic chromosome
131.	(1) Rounded bodies	(2) Type of protein
	(3) Sex chromosome	(4) Node like structure on-chromosome
132.	The cross of f , hybrid with either its do	ominant or recessive parent is known as :
	(1) Test cross	(2) Back cross
	(3) Reverse cross	(4) Polygenic inheritance
133.	Which is the characteristics of Euchron	matin ?
	(1) Small	(2) Light stained
10/42 0	(3) Tightly packed	(4) Inactive in transcription
134.	and the state of t	ng agent ?
	(1) 5-Bromo uracil	(2) 5-chloro uracil
125	(3) Hydrazine	(4) Ethylethane sulphonate
135.	(a) II	
136.	()	(3) H_3 (4) H_4
100.	The state of the s	
	crossovers that occur during meior	es are based on the average number of
	mai occui uuring meio	\$1\$
		nated by calculating the frequency of
	(3) For small map intervals (<20 cM)	the map distance equal the frequency of
	a single crossover in the interval.	and map distance equal the frequency of
	(4) The expected frequency of do	suble crossovers is calculated on the
	~ G10350 VC1	occur dependently.
137.	Anastral mitosis is characteristics of	,
	(1) All living organism	(2) Higher plants
	(3) Lower animals	(1) Higher and
138.	The phenomenon of masking the exp	ression of a gene by another non allelic
	gene is known as:	or a gene by another non allelic
	(1) Mutation (2) Epistasis	(3) Heterosia
139.	Bar eye in Drosophila is due to :	(4) Dominance
	(1) Duplication (2) Deficiency	(3) Inversion
140.	The phenomenon of heterosis is:	(1) Translocation
	(1) Structural hybridity	
	(3) Hybrid incompatibility	(2) Hybrid serility (4) Hybrid vyour
	. 4 20 00	(1) Tryona vyour
	(11)	

141.	Cytoplasmic male sterility is inherited:		
	(1) Paternally		Maternally
	(3) Bacteriophage multiplication		Paternally and Maternally both
142.	A gene which synthesizes a repressor protein is known as:		
	(1) Regulator gene		Operator gene
	(3) Promoter gene	26 .00	CAP
143.	Which of the following is <i>not</i> related with karyotype?		
	(1) Number of chromosome	(2)	Size of chromosome Shape of chromosome
	(3) Chemical nature of chromosome		
144.	Who wrote the famous book 'Origin of S	spec	Charles Darwin
	(1) Lamarck		Mendel
	(3) De Vries	-5 65	
145.	XX-XO type of sex determination is four	(2)	Grasshopper (4) Rumex sp.
	(1) Hen (2) Cock		
146.	The most important use of haploids in t	ne p (2)	Heterozygous diploids
	(1) Homozygous diploids	(4)	Segmental allopolyploids
	(3) Amphidiploids	(1)	
147.	Raphanobrassica is an example of:	(2)	Diploid
	(1) Haploid	(4)	Allopolyploid
	(3) Tutoport pro-		
148.	Which statement is <i>incorrect</i> for multiple allelism? (1) Eye colour in drosophilla is an example of multiple allelism.		
	and blood groups in humans is due to multiple unest		
	(2) ABC) blood groups in the state of inheritance. (3) It follows Mendel's concept of inheritance.		
	 (3) It follows Mendel's concept of inheritance. (4) Skin colour in rodents may be explain by multiple allelism concept. 		
	Meiosis involves: Meiosis involves:		
149.	Meiosis involves: (1) One division of nucleus and one division of chromosome (2) One division of nucleus and one division of chromosome		
	(1) One division of nucleus and one division of Chromosome (2) Two division of nucleus and two division of chromosome		
	 (2) Two division of nucleus and one division of chromosome (3) One division of nucleus and two division of chromosome (4) Two division of nucleus and two division of chromosome (4) Two division of nucleus and two division of monohybrid cross? 		
	The division of		
	the one of the following is not characters.		
150.	1 . 47(15) UCT		
	(1) It is a cross permeter a single pair of alleles. a single pair of alleles. a single pair of alleles. generation is 9:3:3:1.		
	 (2) Phenotypic ratio of 1:2:1 in f₂ generation. (3) It produces genotypic ratio of a single trait. (4) It studies the inheritance of a single trait. 		
	(3) It is unlies the innernance of a sing.		
	(4) It sto		

. .

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ट पर तथा ओ०एम०आर० उत्तर-पत्र के दोनों पृष्ठों पर केवल **नीली/काली बाल-पाइंट पेन** से ही लिखें)

- 1. प्रश्न पुरितका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुरितका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक संख्या और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार बाल-प्वाइंट पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर भून्य अंक दिये जायेंगे।

11. एफ कार्य के लिये इस पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा अंतिम खाली पृष्ठ का

प्रयाग परी केवलगी एम० आर० उत्तर-पत्र ही परीक्षा भवन में जमा करें।
12. परीक्षा के उपरान्त केवलगी परीक्षा भवन के ...

12. परादा। पर नगरा नवन म जमा क 13. परीक्षा समाप्त होने से पर्ग परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी। 13. परीक्षा समापा परीहमें अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित 14. यदि कोई अभागी हो होगी।

दंड का / की भागी हो होगी।