Intal No. of Printed Pages: 28

s: 28		1: 1-1- L. Is	hia/black	hall point	non)	
be filled up	by the can	naate by b	ше/ шаск	. <i>bau-poi</i> m	pen)	
				V.		
in words)		(20	18)		

(i) No (Write the digits in words).....

roll No.

ser al No. of OMR Answer Sheet

entre Code No.

(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

- se only blue/black ball-point pen in the space above and on both sides of the OMR Answer Sheet)
- Within 30 minutes of the issur of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/que tion is missing. In case of faulty Question Booklet bring it to the notice of the Scherintendent/Invigilators immediately to obtain a fresh Question Booklet
- Do not bring any loos paper, written or blank, inside the l amination Hall except the Admit Card.
- called or mutitated. A second OMR Answer A separate OMR Answer Sheet is given. It should not Sheet shall not be plovided. Only the OM! Answer Shee will be evaluated.
- Write all the entries by blue/black ball en in he spa 4.
- On the front page of the OMR Answer Sheet write by pen your Holl Number in the space provided at the top, and by darkening the circle at the bottom, Also, write the Question Booklet Number, Centre Code Number and the Set Number (wherever applicable) in appropriate places.
- No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) or OMR Answer Sheet and also Roll No. and OMR Answer Sheet Sérial No. on the Question Booklet. Are change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- Early question in this Booklet is lonewed by four alternative answers. For each question, you are to record the correct option on the OMR Answer Sheet by darkening the appropriate circle in the corresponding row of the OMR Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the OMR Answer Sheet.
- For each question, darken only one circle on the OMR Answer Sheet. If you darken more than one anche or darken a circle partially, the answer will be treated as incorrect.
- were that the answer once filled in ink cannot be changed. If you do not wish to attempt a question. the circles in the corresponding row blank (such question will be awarded zero mark)
- arrough work, use the inner back page of the title cover and the blank page at the end of this 12 p 15 c
- an empletion of the Test, the Candidate must handover the OMR Answer Sheet to the Invigilator a tracexamination room/hall. However, candidates are allowed to take away Text Booklet and copy . DAR Answer Sheet with them.
- there i cates are not permitted to leave the Examination Hall until the end of the Test.
- The additional statements to use any form of unfair means, he/she shall be liable to such punishment 48 th University may determine and impose on him/her.
- ाम विदेश रिप्ती ये अस्तिम आवरण-पृष्ठ पर दिवे गए हैं।

SPACE FOR ROUGH WORK

रफ़ कार्य के लिए जगह

No. of Questions: 120

Full Marks: 360

Note:

- (1) Attempt as many questions as you can. Each question carries 3 marks.
 One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- 1. The level of blood calcium is decreased due to the deficiency of
 - (1) thyroxine

(2) calcitonin

(3) parathormone

- (4) cortisol
- 2. Which one of the following combinations is stored and secreted by the posterior pituitary?
 - (1) Vasopressin and Oxytocin
 - (2) Aldosterone and Cortisone
 - (3) Growth hormone and Gonadotropin releasing hormone
 - (4) Estrogen and Testosterone

3.	Hypothyroidism in an adult causes
	(1) Cretinism (2) Goiter (3) Acromegaly (4) Myxedema
4.	Under normal conditions, Parathyroid hormone
	(1) causes the blood phosphate levels to increase
	(2) stops the absorption of calcium from intestine
	(3) causes the blood calcium levels to decrease
	(4) stimulates release of calcium by the kidneys
5.	Which one of the following controls the secretion of Adrenocorticotropic Hormone (ACTH)?
	(1) Cortisol (2) Aldosterone (3) Epinephrine (4) Testosterone
6.	Which one of the following disease conditions is caused due to low levels of adrenal cortex hormone?
	(1) Addison's disease (2) Cushing's syndrome
	(3) Tetany (4) Goiter
7.	The pancreatic islet produces the following hormones
	(1) Pancreatin (2) ACTH and Aldosterone
	(3) Insulin and Glucagon (4) Cortisol and Oxytocin
8.	Which one of the following gland produces melatonin?
	(1) Pituitary (2) Pineal (3) Thyroid (4) Hypothalamus
(43)	2

9.	Which one of the following cells are	the	source of testosterone?	
	(1) Leydig cells	(2)	Gamma cells	
	(3) Kupffer cells	(4)	Sertoli cells	
10.	The hypothalamus that produces hor via the	mor	es is connected to the pituitary gland	ŀ
	(1) Infundibulum	(2)	Neurohypophysis	
	(3) Diencephalon	(4)	Cerebellum	
11.	Secretin is released by			
	(1) cells in the anterior hypothalami	us		
	(2) cells of gastric mucosa		Si)	
	(3) S-cells in the duodenal mucosa			
	(4) cells in the posterior hypothalan	nus		
12.	Which one of the following is a role	of o	exytocin?	
	(1) Decreasing the reuptake of gluco	ose i	n the kidneys	
	(2) Increasing the potency of the sp	ino-	thalamic tract	
	(3) Increasing the reuptake of sodiu	m i	n the kidneys	
	(4) Promoting uterine contraction	0.1		
(3)	3		(P.T.O)
9)	J		(1.1.0	1

(43)

13.	Vasopressin hormone belongs to fam	nily of
	(1) amino acid and derivatives	(2) carbohydrates
	(3) polypeptides	(4) steroids
14.	Which one of the following cleavage zygote?	e pattern is followed by the mammalian
	(1) Holoblastic rotational	(2) Meroblastic rotational
	(3) Holoblastic radial	(4) Meroblastic radial
15.	With respect to the functions of an following is incorrect?	amphibian 'organizer', which one of the
	(1) The ability to self-differentiate de	orsal mesoderm
	(2) The ability to ventralize the ector	derm and induce formation of the neural
	(3) The ability to initiate the movem	ents of gastrulation
	(4) The ability to produce molecules	like Chordin and Noggin
16.	Molting in insects is triggered by	
	(1) auxin	(2) ecdysone
	(3) juvenile hormone	(4) β-catenin
17.	Regeneration is possible in tadpoles	for amputated
	(1) tail and hind limbs	(2) jaws and eyes
	(3) intestine	(4) forelimbs
43)	4	

18.		tages of mammalia od cells are formed	n development, within wh?	nich one of the
	(1) Chorion	(2) Yolk sac	(3) Allantois (4) A	mnion
19.	Which one is the	e main reactant of E	dman's reagent used in prot	ein sequencing?
	(1) Densyl chlo	ride	(2) Dabsyl chloride	
	(3) Benzocyana	te	(4) Phenylisothiocyanate	•
20.	Mutarotation in	monosaccharides i	s best represented by the int	erconversion of
	(1) D vs. L ison	mers	(2) α vs. β isomers	
	(3) Syn vs. Ant	i isoforms	(4) Keto vs. Enol isofor	ms
21.	Which one of th	e following option is	correct for a protein with a	β ₂ composition?
	(1) A homotetra	americ protein	(2) A heterotetrameric I	protein
	(3) A homodim	eric protein	(4) Both (1) and (3)	
22.	Exposure of a protein. This h	native protein to lov appens due to cha	v pH results into partial den nges in	naturation of the
	(1) disulphide	bonds	(2) ionic bonds	
	(3) hydrogen b		(4) peptide bonds	
23.	shows Km valu	rme from liver show the of 10 mM. Whit ytic efficiency of the	vs Km value of 5 mM and ch one of the following is e enzyme?	that from brain the best option
	(1) Liver > Bra	in		
	(2) Liver = Bra	in		
	(3) Brain > Liv	er		
	(4) Km does n	ot relate with enzy	me activity	
43)			5	(P.T.O.)

24.	Which one of the following enzyme	belongs to the major class hydrolases?
	(1) Ser-protease (2) Kinase	(3) Aldolase (4) cis-aconitase
25.	The 'F ₀ ' domain of the mitochondri represents the domain	al F ₀ -F ₁ complex is named so because
	(1) without any number	
	(2) that confers O-glycosylation	
	(3) that oxidizes the complex	
	(4) that confers oligomycin sensitivi	ty to the complex
26.	Prostaglandin is synthesized from	
	(1) stearic acid	(2) phosphatidyl-ethanolamine
	(3) phosphatidylcholine	(4) arachidonic acid
27.	Which one of the following contains	a pseudouracil?
	(1) A processed RNA synthesized by	RNA Pol-II
	(2) A processed RNA produced by F	RNA Pol-III
	(3) A processed RNA produced from	lac operon
	(4) A DNA produced by reverse trans	nscriptase
28.	The polymerase that synthesizes independent manner is	a polynucleotide chain in a templat
	(1) DNA Pol-I	(2) DNA Pol-III
	(3) RNA polymerase	(4) Poly-A polymerase
43)	6	

29.	[[[[[[[[[[[[[[[[[[[[phan, tyrosine, pl	그 이 없는 사람들이 가는 것이 되었다면 하는데 하는데 그렇게 되었다면 하는데 하는데 되었다면 했다.	wavelength for 1 mM lycine; which one will
	(1) Tyrosine		(2) Glycine	
	(3) Phenylalanine		(4) Tryptophan	
30.	Which of the even	t is likely to prote	ct host DNA from	EcoRI digestion?
	(1) Methylation of	the recognition si	te DNA	
	(2) De-methylation	of the recognition	n site DNA	
	(3) Phosphorylatio	n of the enzymation	c protein	
	(4) De-phosphoryl	ation of the enzyn	natic protein	
31.			and wool, the R grou to the centre of th	aps are at which one of e helix?
	(1) Extend inward		(2) At centre	
	(3) Stay zig-zag	20	(4) Protrude outw	vard
32.	Which one of the globular proteins?		acids occurs freque	ently in the β-bend of
	(1) Serine	(2) Threonine	(3) Proline	(4) Arginine
33.	The constituent of united by 1 → 4 lippoints is known a	nkages in the cha	branched chains of the sins and by $1 \rightarrow 6$ l	24–30 glucose residues inkages at the branch
	(1) amylose	(2) amylopectin	(3) glucosan	(4) glucan
(43)		7		(P.T.O.)

- 34. Which one of the following examples illustrates multiple allelism?
 - (1) Attached ear lobe
 - (2) Turner syndrome
 - (3) Sepia eye colour of Drosophila
 - (4) ABO blood group in human
- 35. clB technique in Drosophila is used to detect
 - (1) autosomal recessive mutations
 - (2) autosomal dominant mutations
 - (3) sex linked recessive lethal mutations
 - (4) sex linked dominant lethal mutations
- 36. An allele is considered dominant if its phenotype is expressed
 - (1) only in heterozygous condition
 - (2) in homo as well as heterozygous condition
 - (3) only in homozygous condition
 - (4) only in hemizygous condition
- 37. If a couple, husband having an X-linked deadly disease and wife homozygous normal, seeks your advice regarding having children, what will be your advice out of the following?
 - (1) They will have 50% chance of having the affected male child
 - (2) They can safely go for only female child
 - (3) They can safely go for only male child
 - (4) They should not plan to have a child

(43)

30.	ine maximum i	requency of reco	momadon that ca	in occur is	
	(1) 100%	(2) 75%	(3) 50%	(4) 25%	
39.			hromosomes just s were present in	after completion o metaphase?	f mitotic
	(1) 23	(2) 46	(3) 92	(4) 184	
40.	Somatic recomb	ination in immu	noglobulin genes	account for	
	(1) class switch	ing			
	(2) allelic exclu	sion			
	(3) affinity mate	uration			
	(4) increased ex	pression of IgG	gene		
41.	The following po	edigree shows in	heritance of an at	itosomai trait :	
		Q.			
		5			
	Which one of th	ne following cond	lusion can be dra	wn from this pedig	gree?
	(1) The trait is	dominant	(2) The trait	is semi-dominant	
	(3) The trait is	recessive	(4) The char	rt is inconclusive	
42.	In a recombinat		% recombination f	requency between t	wo genes
	(1) 5cM distant	ce apart on a ch	romosome		
	(2) 50cM distan	nce apart on a c	hromosome		
	(3) tightly linke	:d			
	(4) far apart ar	nd showing inde	pendent assortme	nt	
43)	potyski 98%		9		(P.T.O.)

		**			
43.	If a dihybrid test cross yields 1:1:1	:1 ratio, then it indicates that the			
	(1) two genes are independently assorting				
	(2) two genes are linked				
	(3) the alleles of a gene is segregat	ed			
	(4) the genes are exclusively X-link	ed			
44.	O-linked glycosylation exclusively ta	akes place in the			
	(1) lysosome	(2) ribosome			
	(3) golgi body	(4) endoplasmic reticulum			
45.	. The two different domains of prokaryotes are				
	(1) Archaea and Monera	(2) Eukarya and Monera			
	(3) Bacteria and Protista	(4) Bacteria and Archaea			
46.	Mechanically gated ion channel are mainly present in				
	(1) nerve cells (2) rod cells	(3) cone cells (4) hair cells			
47.	The longest phase in meiosis I is				
	(1) prophase I	(2) metaphase I			
	(3) anaphase I	(4) telophase I			
48.	Chromosome puff in polytene chromosome are the sites of active				
	(1) DNA synthesis	(2) RNA synthesis			
	(3) Protein synthesis	(4) Both (1) and (3)			
(43)	10				

49.	Which one of the following is the n in many tumors?	nain cause of immortalization of cancer cells
	(1) Shortening of telomere	
	(2) Complete loss of telomere	
	(3) Inactivation of telomerase enz	yme
	(4) Reactivation of telomerase enz	zyme
50.	Calcium ATPase pump in muscle	cells are present in
	(1) endoplasmic reticulum	(2) golgi body
	(3) lysosomes	(4) mitochondria
51.	Receptor-mediated endocytosis are	e often facilitated by
	(1) COP I vesicle	(2) COP II vesicle
	(3) Clatherin-coated vesicle	(4) Both COP I and COP II vesicle
52.	Lampbrush chromosomes are fou	nd in the oocytes of certain animals during
	(1) Leptotene stage	(2) Zygotene stage
	(3) Pachytene stage	(4) Diplotene stage
53.	During prophase I of meiosis, hom a process called	ologous chromosomes line up side-by-side in
	(1) genetic recombination	(2) meiosis II
	(3) synapsis	(4) crossing-over
43)		11 (P.T.O.

- The active transport of solute in the cell is characterized by 54.
 - (1) its uptake along the concentration gradient utilizing energy
 - (2) requirement of a carrier to support the transport along the concentration gradient
 - (3) chemical modification of the solute during its uptake
 - (4) its uptake against the concentration gradient
- Chiasmata are formed during meiosis 55.
 - (1) before metaphase I
- (2) after metaphase I
- (3) during prophase II
- (4) during metaphase II
- **56.** Cdk-1/cyclin A complex acts at

 - (1) $G_1 \rightarrow S$ transition point (2) $S \rightarrow G_2$ transition point
 - (3) restriction point

- (4) G₂ → M transition point
- Polytene chromosome is generated due to 57.
 - (1) failure of DNA replication
 - (2) repeated DNA replication without segregation of chromosome
 - (3) pairing of homologous chromosomes
 - (4) due to extensive transcription process

(P.T.O.)

58.	In a standard eukaryotic cell cycle,	'interphase' constitutes
	(1) only G ₁ phase	(2) only S phase
	(3) only M phase	(4) G ₁ , S and G ₂ phases
59.	The phenomenon of divergent evolution	on can be explained by taking the example
	(1) steady increase in the body size	of different horse species
	(2) presence of flipper in whale and	uropod in Palaemon
	(3) mouth parts of insects having d	fferent feeding nature
	(4) wings of a bird and wings of an	insect
60.	The type of horses which were four million years ago were	toed, browsers and survived nearly 55
	(1) Eohippus (2) Merychippus	(3) Equus (4) Mesohippus
61.	0 1 1	ed to a very small size resulting into the population. This may happen due to
	(1) natural selection	(2) gene flow
	(3) speciation	(4) genetic drift
62 .	Which one of the following factors n	nay cause a population to evolve?
	(1) Large population size	(2) Random mating
	(3) Absence of mutation	(4) Random genetic drift

13

(43)

63.	In a population of 0.6 respectively. T	200 individuals, the number of bot	he frequency of a h homozygotes i	A and α alleles is 0.4 and n this population will be
	(1) 16 and 36	(2) 42 and 96	(3) 50 and 50	(4) 32 and 72
64.	Which one of the	following is the ex	cample of exope	ptidase?
	(1) Trypsin		(2) Pepsin	
	(3) Carboxypeptid	lase	(4) Lipase	
65.	End product of th	ne starch digestion	in mammals is	
	(1) fructose	(2) glucose	(3) galactose	(4) sucrose
66.	Most efficient and	widely distributed	respiratory pigmo	ent in animal kingdom is
	(1) hemerythrin		(2) chlorocruo	rin
	(3) hemocyanin		(4) hemoglobir	1
67.	During first inhal	ation in birds, air	directly goes to	
	(1) Dorsobronchi		(2) Caudal sac	es
	(3) Cranial sacs		(4) Parabronch	ni
68.	In certain condition	ons, some of the fi	shes rely on RA	M ventilation because
	(1) they do not w	ant to waste energ	y while swimmi	ng
	(2) they are tired	and unable to clo	se mouth	
	(3) energy is not	available to operat	e the respirator	y muscles
	(4) they achieve h	nigh ventilation at	low respiratory	cost
(43)		14		

69.	One of the major function of the pe	psin is to digest	
	(1) albumin (2) elastin	(3) collagen (4) polypeptides	
70 .	Neutrophils invasion of the inflamed	l area is	
	(1) first line of defence	(2) second line of defence	
	(3) third line of defence	(4) fourth line of defence	
71.	Which one of the following region of ne	ephron is virtually impermeable to water	.5
	(1) Bowman's capsule	(2) Proximal tubule	
	(3) Ascending loop of Henle	(4) Descending loop of Henle	
72.	The gas exchange in teleost fishes is	s greatly dependent on	
	(1) cross current flow of oxygenated	water	
	(2) counter current flow of oxygenat	ted water	
	(3) uniform current flow of oxygenat	ted water	
	(4) intermittent current flow of oxyg	genated water	
73 .	The protein that has ATPase activity	y is	
	(1) myosin (2) troponins	(3) topomyosin (4) actin	
74.	In photoreceptor cells, the photosen	sitive compound is	
	(1) 11-cis-retinal (2) 11-cis-retinol	(3) photopsins (4) transducin	
43)	15	5 (P.T.	.0.)

75.	Mechanoreceptors in cochlea are	
	(1) hair cells	(2) basilar membrane
	(3) Deiter's cells	(4) tectorial membrane
76.	Which one of the following is involve potential?	ved in hyperpolarization phase of action
	(1) Voltage gated sodium channel	
	(2) Voltage gated potassium channel	I (
	(3) Voltage gated calcium channel	
	(4) Na ⁺ -K ⁺ ATPase	
77.	Buffering action of the haemoglobin	is best achieved because it has
	(1) high histidine content	(2) dissociable N-terminal
	(3) dissociable C-terminal	(4) high alanine content
7 8.	The chemical nature of blood group	substances on RBC membrane is
	(1) carbohydrates	(2) proteins
	(3) glycoproteins	(4) glycosphingolipids
79.	Cervical vertebrae of birds are	
	(1) heterocoelous	(2) acoelous
	(3) amphicoelous	(4) procoelous
43)	16	

80.	Interclavicle in re	ptile	s is		:#			
	(1) H-shaped	(2)	T-shaped	(3)	W-shaped	(4)	A-shaped	
81.	Pecten is absent i	in w	hich bird?					
	(1) Crow	(2)	Pigeon	(3)	Kiwi	(4)	Peacock	
82.	In frog the sexual	em	brace between	mal	e and female i	s ca	lled	
	(1) spawning	(2)	amplexus	(3)	aplexus	(4)	swarming	
83.	Axolotl larva is th	e be	est example of					
	(1) regeneration			(2)	neoteny			
	(3) retrogressive r	neta	morphosis	(4)	connecting lin	k	34	
84.	Poison secreted by	у ра	rotid glands of	am	phibians is			
	(1) fatty acid	(2)	carbohydrate	(3)	alkaloid	(4)	alcohol	
85.	What forms stape	s of	middle ear bo	ne?				
	(1) Hyomandibula	ar		(2)	Quadrate			
	(3) Squamosal			(4)	Jaw			
86.	Pituitary gland is	situ	ated in		9			
	(1) ethmoid plate			(2)	hypophysial fe	enes	tra	
	(3) olfactory caps	ule		(4)	basal plate			
(43)			17					(P.T.O.)

87.	Mouth of Branchiostoma is bordered by
	(1) oral sucker (2) oral frill (3) velum (4) oral hood
88.	In cephalochordates, development is
	(1) direct including a free-swimming larva
	(2) indirect including a parasitic larva
	(3) direct including a parasitic larva
	(4) indirect including a free-swimming larva
89.	In Myxiniformes, ear is with
	(1) 2 semicircular canal (2) no semicircular canal
	(3) 1 semicircular canal (4) 3 semicircular canal
90.	Crossopterygii had scales of
	(1) cycloid type (2) ctenoid type (3) placoid type (4) cosmoid type
91.	Iridocytes are light reflecting cells. They have
	(1) no pigments
	(2) no pigment but contain guanine crystals
	(3) pigment with guanine crystals
	(4) only crystals
(43)	18

92.	Heterocercal tail is present in		
	(1) Scoliodon (2) Cyclostomes	(3) Dipnoi (4) Latimeria	
93.	Epithelial lining in a true stomach of	contains	
	(1) salivary glands	(2) gastric glands	
	(3) mucous glands	(4) sebaceous glands	
94.	A chamber common to all types of	canal systems of sponges is called	
	(1) paragastric cavity	(2) radial chamber	
	(3) excurrent canal	(4) incurrent canal	
95.	Which one of the following helminth	th shows rhythmicity?	
	(1) Hymenolepis	(2) Diphyllobrothrium	
	(3) Loa loa	(4) Dipylidium	
96.	Metameric segmentation occurs in t	the individuals belonging to	
	(1) Cestoda (2) Annelida	(3) Trematoda (4) Rotifera	
97.	Pedicellariae in Asterias are meant	for	
	(1) excretion	(2) osmoregulation	
	(3) defence	(4) reproduction	
43)	19	19 (P.T.	0.

98.	Which one of the following is pern malarial parasite?	icious quotidian, malignant and tropica
	(1) Plasmodium vivax	(2) Plasmodium falciparum
	(3) Plasmodium berghei	(4) Plasmodium volii
99.	Radial symmetry is found in	
	(1) Molluscs (2) Arthropods	(3) Starfishes (4) Annelids
100.	Staghorn coral is the common name	e of
	(1) Fungia (2) Pennatula	(3) Madrepora (4) Corallium
101.	Tsetse fly transmits the infective sta	ge of
	(1) Plasmodium	(2) Trypanosoma
	(3) Leishmania	(4) Giardia
102.	Which one of the following glands are honey bees?	involved in the production of royal jelly by
	(1) Mandibular glands	(2) Hypopharyngeal glands
	(3) Oesophageal glands	(4) Thoracic glands
103.	Which one of the following is a livin	g fossil?
	(1) Holothuria (2) Antedon	(3) Ophiothrix (4) Echinus
(43)	20	

104.	The number of daughter Paramecia	prod	uced following	conj	ugation is	
	(1) 8 from one conjugant	(2)	8 from two con	njug	ants	
	(3) 16 from two conjugants	(4)	12 from two co	onju	gants	
105.	Pseudocoelom occurs as a body cavi	ty iı	n			
	(1) Trematodes	(2)	Cestodes			
	(3) Nematodes	(4)	Turbellarians			
106.	Tube within a tube exists in					
	(1) Ancylostoma (2) Obelia	(3)	Taemia	(4)	Paramecium	ı
107.	Veliger larva occurs in the life cycle	of				
	(1) Echinoderms	(2)	Molluscs			
	(3) Arthropods	(4)	Annelids			
108.	The most primitive invertebrates to pare	osse	ess musculo-epi	ithel	ial and nerv	e cells
	(1) Sycon (2) Spongilla	(3)	Fasciola	(4)	Hydra	
109.	Which one of the following is not th	ie ga	aseous biogeoch	nemi	cal cycle?	
	(1) Phosphorus cycle	(2)	Sulphur cycle			
	(3) Nitrogen cycle	(4)	Carbon cycle			
(43)	21				i	(P.T.O.

110.	True ecosystem is , where					
	(1) primary consumers are more that	an p	oroducers			
	(2) secondary consumers dominate	the	numbers and p	productivity		
	(3) producers are more than primar	ry co	onsumers			
	(4) primary consumers are independent	dent	of producers			
111.	Shelford law of tolerance states that for environmental factors show	an	organism with v	wide range of tolerance		
	(1) narrow distribution with high po	opul	ation size			
	(2) narrow distribution with low population size					
	(3) wide distribution with high population size					
	(4) wide distribution with low popul	latio	n size			
l 12.	Which one of the following is the se	econ	dary pollutant?			
	(1) CO (2) CO ₂	(3)	SO_2	(4) O ₃		
l 13.	Gulf of Kutch is declared First Marin conserve	ie Na	tional Park by (Government of India to		
	(1) coral reefs	(2)	Gangetic dolpl	hins		
	(3) salt water crocodile	(4)	whales			
43)	22	2				

High density of Deer population in an area will lead to					
(1) intraspecific competition	(2) interspecific competition				
(3) mutualism	(4) commensalism				
Which one of the following biologic Concept?	ists is known to give Biological	Species			
(1) Mayr (2) Darwin	(3) Linnaeus (4) Candolle				
colouration and availability of variou	s mutants in the population. Which	one of			
(1) Biological Species Concept	(2) Typological Species Concept				
(3) Evolutionary Species Concept	(4) Ecological Species Concept				
2000 ▼ ■ 1000 T					
(1) induced breeding (3) Apiculture	(4) Sericulture				
The wax gland of honey bee is four	nd in				
(1) queen and workers	(2) workers				
(3) queen	(4) drones				
2:	3	(P.T.O.)			
	(1) intraspecific competition (3) mutualism Which one of the following biologic Concept? (1) Mayr (2) Darwin Members of a species may have poly colouration and availability of various the following species concept conseparate species? (1) Biological Species Concept (3) Evolutionary Species Concept Hypophysation is a technique used (1) induced breeding (3) Apiculture The wax gland of honey bee is four (1) queen and workers (3) queen	(1) intraspecific competition (2) interspecific competition (3) mutualism (4) commensalism Which one of the following biologists is known to give Biological and Concept? (1) Mayr (2) Darwin (3) Linnaeus (4) Candolle Members of a species may have polymorphic forms due to sexual dimonocolouration and availability of various mutants in the population. Which the following species concept considers each morphological form to separate species? (1) Biological Species Concept (2) Typological Species Concept (3) Evolutionary Species Concept (4) Ecological Species Concept Hypophysation is a technique used for (1) induced breeding (2) lac culture (3) Apiculture The wax gland of honey bee is found in (1) queen and workers (2) workers			

- 119. In the normal human being the concentration(s) of various antibodies in the serum is (are) in the order of
 - (1) IgM > IgA > IgG > IgE
- (2) IgG > IgA > IgM > IgE
- (3) IgE > IgG > IgM > IgA
- (4) IgA > IgM > IgE > IgG
- 120. The T-cell receptor can bind to antigenic peptides
 - (1) only in the free form
 - (2) only when loaded on to MHC molecule
 - (3) only when complexed to hapten
 - (4) only when bound by antibody

SPACE FOR ROUGH WORK

रफ़ कार्य के लिए जगह

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा ओ०एम०आर० उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली/काली बाल-प्वाइंट पेन से ही लिखें)

- प्रश्न-पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई पृष्ठ या प्र छुटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूर पुस्तिका प्राप्त कर लें।
- 2. परोक्षा भवन में प्रवेश-पत्र के अतिरिक्त, लिखा या साटा कोई भी खुला कागज साथ में न लाये।
- 3. ओर्एमव्आरव उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा ओव्एमव्आरव उत्त पत्र नहीं दिया जायेगा। केवल ओव्एमव्आरव उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- सभी प्रविधिको प्रथम आवरण-पृष्ट पर नीली/काली बाल पेन से निर्धारित स्थान पर लिखें।
- 5. ओ०एम०आर० उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा तीचे दिये वृ को गाड़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक एवं केन्द्र कोड नम्बर तथा सेट का नम् उचित स्थानों पर लिखें।
- 6. अंब्रुणमञ्जारक उत्तर-पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) नधा प्रश्न पुस्तिका पर अनुक्रमांक संब और ओक्एमब्आरब उत्तर-पत्र संब की प्रविष्टियों में उपित्लेखन की अनुवाद नहीं
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित स का प्रयोग माना जायेगा।
- 8. पश्च-्रिश्तका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आफ अंत्युक्त आरत उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को ओल्प्म०आए० उत्तर-पत्र के प्रथम । पर दिये गये निर्देशों के अनुसार पैन से गाड़ा करना है।
- 9. प्रत्येक प्रभा के उत्तर के लिये केवल एक ही यून को भाड़ा करें। एक से अधिक वृभी को गांधा अप अप अप अप अप अप अप अक यून को अपूर्ण भरने पर यह उत्तर गलत माना अधिगा।
- 10. इन्हें के एक बार स्थाही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रथ्न का उत्तर नहीं देश इन हों के सम्ब्रियत पंक्ति के सामने दिये गये मधी दुनों को खाली छोड़ दें। ऐसे प्रश्नी का सुन्दा अब दिये हुना
- 11. एट कार्य के लिये प्रश्न-पुस्तिका के भुखपुत्र ये अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग 👫
- 12. जोक्षा की समाप्ति के बाद अभ्यर्थी अपना ओ॰एम॰आर॰ उत्तर-पत्र परीक्षा कक्ष/होल में कक्ष निरीक्षक की वीप हैं। हो । अपने साथ प्रश्न-पुस्तिका तथा ओ॰एम॰आर॰ उत्तर-पत्र की प्रति ले जा सकते हैं।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भा होगा/होगी।