1 If \times means +, -means \times , + means + and + means -, then $(3 - 15 + 19) \times 8 + 6 =$

C

D

SSF JAMIA MILLIA ISLAMIA **New Delhi**

If P means 'division', T means 'addition', M means 'subtraction' and D means 'multiplication', then what will be the value of the expression 12 M 12 D 28 P 7 T

15?

(12-12×28)+7+15.

-21

B -15

C 15

D 45

3 Arrange the following words in meaningful sequence

1. Site

2. Plan

3. Rent

4. Money 5. Building 6. Construction

A 1, 2, 3, 6, 5, 4

2, 3, 6, 5, 1, 4

C 3, 4, 2, 6, 5, 1

D 4, 1, 2, 6, 5, 3

A player holds 13 cards of four suits, of which seven are black and six are red. 4 There are twice as many diamonds as spades and twice as many hearts as diamonds. How many clubs does he holds?

A

5 B

6

5 The total of the ages of Amar, Akbar and Anthony is 80 years. What was the total

of their ages three years ago?

A 71 years

B 72 years

C 74 years

D 77 years

SSF JAMIA MILLIA ISLAMIA New Delhi

- If 100 cats kill 100 mice in 100 days, then 4 cats would kill 4 mice in how many days?
 - A 1 day

B 4 days

C 40 days

- D 100 days
- A printer numbers the pages of a book starting with 1 and uses 3189 digits in all.

 How many pages does the book have?
 - A 1000

B 1074

C 1075

- D 1080
- 8 If $\frac{x}{\alpha} + \frac{x}{\beta} = 1$ touches the circle $x^2 + y^2 = a^2$, then the point $(\frac{1}{\alpha}, \frac{1}{\beta})$ lies on
 - A a straight line

B a circle

C a parabola

D an ellipse

- The length of latus ractum of $x^2 4x 8y + 12 = 0$ is
 - A 4

B 6

C 8

D 10

SSF JAMIA MILLIA ISLAMIA New Delhi

- The normal to the parabola $y^2 = 4x$ at P(1, 2) meets the parabola again in Q, the coordinates of Q are
 - A (-6, 9)

B (9, -6)

C (-9, -6)

- D (-6, -9)
- The pole of the line lx + my + n = 0 with respect to the parabola $y^2 = 4ax$ is
 - A $\left(\frac{n}{l}, \frac{-2am}{l}\right)$
- $B \qquad \left(\frac{1}{m}, \frac{-2an}{l}\right)$
- $C = \left(\frac{n}{m}, \frac{2al}{n}\right)$

- $D \qquad \left(\frac{1}{n}, \frac{2al}{n}\right)$
- In an ellipse, the distance between its focus is 6 and minor axis is 8. The eccentricity is
 - A 1/2

B 4/5

C 1/√5

D 3/5

13 The line lx + my + n = 0 is normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, if

A
$$\frac{a^2}{m^2} + \frac{b^2}{l^2} = \frac{(a^2 - b^2)^2}{n^2}$$

B
$$\frac{a^2}{l^2} + \frac{b^2}{m^2} = \frac{(a^2 - b^2)^2}{n^2}$$

$$C \qquad \frac{a^2}{n^2} + \frac{b^2}{l^2} = \frac{(a^2 - b^2)^2}{m^2}$$

D None

14 The eccentricity of the conjugate hyperbola of the hyperbola $x^2 - 3y^2 = 1$

B
$$\frac{\sqrt{2}}{3}$$

$$C = \frac{4}{3}$$

SSF JAMIA MILLIA ISLAMIA New Delhi

15 If the equation $\frac{1}{x} + \frac{1}{x+a} = \frac{1}{x} + \frac{1}{x+a}$ has real, equal and opposite sign roots then,

A
$$\lambda^2 = 3a^2$$

$$B \quad \lambda^2 = 2a^2$$

$$C \qquad \lambda^2 = 3a^2$$

$$D \quad a^2 = 2 \times^2$$

16 The product of three consecutive natural number is divisible by

A 3

B 8

C 6

D 11

17 How many signals can be made by 5 flags from 8 flags of different colours?

A 8C5

B 8C5 × 5!

C 85

- The letters of the word COCHIN are permuted and all the permutations are arranged in an alphabetical order s in an English dictionary. The number of words that appear before the word COCHIN is
 - A 360

B 192

C 96

D 48

SSF JAMIA MILLIA ISLAMIA New Delhi

- Find the direction cosines of a vector \vec{r} which is equally inclined with OX, OY and OZ are
 - A $\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}$

B $\pm \frac{1}{3}, \pm \frac{1}{3}, \pm \frac{1}{3}$

C $\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}$

- D None of these
- The function $f(t) = \frac{t}{\log t}$ increases on the interval
 - A (O,∞)

B (e, ∞)

C (0,e)

- D None of these
- The differential equation representing the family of curves $y^2 = 2c(x + \sqrt{c})$, where c is a positive parameter, is of
 - A Order 1 and degree 3
- B Order 2 and degree 3
- C Order 1 and degree 2
- D none of these

The general solution of the differential equation $\frac{dy}{dx} + \frac{2}{x}y = x^2$, is

$$A \quad y = cx^2 + \frac{x^2}{5}$$

A
$$y = cx^2 + \frac{x^3}{5}$$
 B $y = cx^{-2} + \frac{x^3}{5}$

$$C \quad y = cx^3 - \frac{x^3}{4}$$

$$D y = cx^{-3} \frac{x^2}{4}$$

SSF JAMIA MILLIA ISLAMIA New Delhi

Let $\cos{(\alpha + \beta)} = \frac{4}{5}$ and let $\sin{(\alpha - \beta)} = \frac{5}{13}$, where $0 < \alpha, \beta \le \frac{\pi}{4}$. Then $tan2\alpha =$

A
$$\frac{19}{12}$$

B
$$\frac{20}{7}$$

$$C = \frac{25}{16}$$

D
$$\frac{56}{33}$$

The circum-radius and in radius of a triangle ABC be 10 and 3 units respectively, 24 then $a \cot A + b \cot B + c \cot C$ is equal to

The value of $\sin\left(2tan^{-1}\frac{1}{3}\right) + \cos(tan^{-1}2\sqrt{2})$, is

$$A = \frac{12}{13}$$

B
$$\frac{13}{14}$$

$$C = \frac{14}{15}$$

- The set of values of α for which the equation $\sin^4 x + \cos^4 x = \alpha$ has a 26 solution, is
 - (0, 1)

B $(1, \frac{3}{2})$

C [-1, 1]

- If \vec{a} , \vec{b} , \vec{c} are non-coplanar vectors such that $(\vec{a} \times \vec{b}) = \vec{c}$, $(\vec{b} \times \vec{c}) = \vec{a}$, $(\vec{c} \times \vec{a}) = \vec{b}$, (3x2) = 2 . [31 +2 [4] -3[2] then $|\vec{a}| + 2|\vec{b}| - 3|\vec{c}|$ is equal to 5 + 2 2 -3 6
 - C D None of these

SSF JAMIA MILLIA ISLAMIA **New Delhi**

28 A unit vector perpendicular to the plane of $\vec{a} = 2i - 6j - 3k$ and

$$\vec{b} = 4i + 3j - 3k$$
, is

A
$$\frac{1}{\sqrt{26}}(4i + 3j - k)$$
 B $\frac{1}{7}(2i + 6j - 3k)$ $\overline{4 \cdot 3}$

B
$$\frac{1}{7}(2i + 6j - 3k)$$

C
$$\frac{1}{7}(3i + 2j + 6k)$$

B
$$\frac{1}{7}(2i + 6j - 3k)$$

D $\frac{1}{7}(2i + 3j - 6k)$ $a = \frac{a}{14}$

- If $\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} \times (\vec{c} \times \vec{a})$ and $[\vec{a}\vec{b}\vec{c}] \neq 0$, then $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to

 $B \vec{a} \times \vec{b}$

 $C \vec{b} \times \vec{c}$

D cxa

If the lines x = ay + b, z = cy + d and x = a'y + b', z = c'y + d

perpendicular then

$$A \quad aa' + cc^1 = 1$$

$$B \quad aa' + cc^1 = -1$$

$$C$$
 $ab + cd = a'b' + c'd'$

$$C \quad ab + cd = a'b' + c'd' \quad D \quad aa' + bb^1 = cc^1 + dd'$$

SSF JAMIA MILLIA ISLAMIA

If the lines
$$\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$$
 and $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar, then $k \in \mathbb{R}$

have

The solution set of the inequation |2x - 3| < x - 1, is

A
$$\left(\frac{4}{3},\frac{3}{2}\right) \cup \left(\frac{3}{2},2\right)$$

B
$$\left(\frac{4}{3},2\right)$$

$$C \left[\frac{3}{2},2\right]$$

33 If a, b, c are positive real numbers then

$$\frac{1}{log_abc+1} + \frac{1}{log_bca+1} + \frac{1}{log_cab+1} =$$

34 The number of real solutions of the equations

$$sin(e^x) = 2^x + 2^{-x}, is$$

- A (
- デナエ
- B 1

C 2

D infinitely many

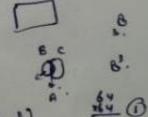
SSF JAMIA MILLIA ISLAMIA New Delhi

- 35 If x + y + z = 1, then the least value of $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$, is
 - A 3

- B 9
- 0+0+1

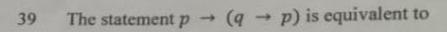
C 27

- D 1
- 3-2 (-2)-1
- Three set A, B, C are such that $A = B \cap C$ and $B = C \cap A$, then
 - $A \quad A \subset B$


- $B A \supset B$
- 4+1 +1

C A = B

- $D A \subset B'$
- Let A and B be two sets containing four and two elements respectively. Then the number of subsets of the set A × B, each having at least three elements is
 - A 275


B 510

C 219

38 If
$$f: R \to R$$
 is given by $f(x) = 3x - 5$, then $f^{-1}(x)$

- A is given by $\frac{1}{3x-5}$
- B is given by $\frac{x+5}{3}$
- C does not exist because f is not one-one
- D does not exist because f is not onto.

A $p \rightarrow (p \land q)$

B $p \rightarrow (p \leftrightarrow q)$

2 2 D

- $C p \rightarrow (p \rightarrow q)$
- $D \quad p \rightarrow (p \lor q)$

SSF JAMIA MILLIA ISLAMIA New Delhi

40 The amplitude of $\sin \frac{\pi}{5} + i(1 - \cos \frac{\pi}{5})$, is

A $\frac{2\pi}{5}$

B $\frac{\pi}{15}$

 $C = \frac{\pi}{10}$

 $D = \frac{\pi}{5}$

If the second term in the expansion of $(\sqrt[13]{a} + \frac{a}{\sqrt{a^{-1}}})^n$ is 14 $a^{5/2}$, then the value of $\frac{\binom{n}{3}}{\binom{n}{3}}$ is

A 4

B 3

C 12

- 42 If C_0 , C_1 , C_2 ,..., C_n denote the binomial coefficients in the binomial expansion $(1+x)^n$, then $C_0 \cdot C_1 + C_2, \dots + (-1)^n C_n =$
 - A 0

B 2"-

C n

- D 2 **
- Sum of the series Log $e^2 + \frac{(\log_e z)^2}{2!} + \frac{(\log_e z)^3}{3!} + \dots \infty$ is equal to
 - A 3

B 2

C 1

D 0

SSF JAMIA MILLIA ISLAMIA New Delhi

- 44 Sum of the series $(\frac{1}{3})^2 + \frac{1}{3}(\frac{1}{3})^4 + \frac{1}{5}(\frac{1}{3})^6 + \infty$ is equal to
 - A 1 Log , 2

B $\frac{1}{2}$ Log, 2

C 1 Log , 2

- $D = \frac{1}{4} \log_x \frac{3}{2}$
- 45 If $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$, then the value of |adj A| is
 - A 827

B a

C a⁵

D a2

2021.08.06 16:19

46 The set of the all values of & for which the system of linear equations:

The set of the all values of
$$2x_1 - 2x_2 + x_3 = \lambda x_1, 2x_1 - 3x_2 + 2x_3 = \lambda x_2, -x_1 + 2x_2 = \lambda x_3 h_{a_1}$$

non trivial solution

- A Contains two elements
- B Contains more than two elements

C Is an empty set

- D Is a singleton set
- 47 The probability that a leap year selected at random contains either 53 Sunday or

100.00	200		North Contract		
5.7	м	lone	riav	8	18
42.40	835	COAR	auj	200	***

SSF JAMIA MILLIA ISLAMIA New Delhi

 $A = \frac{2}{7}$

 $\frac{4}{7}$

 $C = \frac{3}{7}$

- $D = \frac{1}{7}$
- 48 The three identical dice are thrown together. The probability that distinct numbers appear on them is
 - A $\frac{4}{9}$

 $\frac{5}{9}$

 $C = \frac{5}{36}$

- $D = \frac{1}{9}$
- In a box containing 100 bulbs, 10 are defective. What is the probability that out of a sample of 5 bulbs none is defective?
 - A $(\frac{9}{10})^5$

B 9/10

C 10 -5

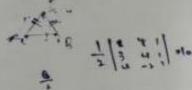
 $D = \left(\frac{1}{2}\right)^2$

- A die is thrown 100 times. If getting an even number is considered a success, the 50 variance of the number of success, is
 - 50 ~

B 25

C 10

D 100


SSF JAMIA MILLIA ISLAMIA **New Delhi**

- The coordinates of two points A and B are (3, 4) and (5, -2) respectively. If P is a point not lying on any of the coordinate axes such that PA = PB and Area of triangle PAB =10, then the coordinates of P are
- (2, 7)

B (7, 2)

(1, 0)

(0, 1)D

If the centroid and circumcentre of a triangle are (3, 3) and (6, 2) respectively, 52 then the orthocenter is

If p and p' be the perpendiculars from origin upon the straight lines 53 $x \sec \theta + y \csc \theta = a \text{ and } x \cos \theta - y \sin \theta = a \cos 2\theta$, then

$$A \quad p^2 + p'^2 = a^2$$

$$B p^2 + 4p'^2 = a^2$$

$$C 4p^2 + p'^2 = a^2$$

B
$$p^2 + 4p'^2 = a^2$$

D $4p^2 + p'^2 = 4a^2$

- If O is the origin and Q is a variable point on $x^2 = 4y$, then the locus of the mid. point of OQ is
 - $A y^2 = 2x$
 - $C x^2 = y$

- $B y^2 = x$

- If the sum of the slopes of the lines given by $x^2 + 2cxy y^2 = 0$, is four time their product, the c has value

B -1

. . C 2 .

D

SSF JAMIA MILLIA ISLAMIA New Delhi

- If $x^2 2pxy y^2 = 0$ and $x^2 2qxy y^2 = 0$ bisect angles between the each other, then
 - A p+q=1

B pq = I

C pq + I = 0

- D $p^2 + pq + q^2 = 0$
- 57 The angle between the tangents drawn from the origin to the circle $(x-7)^2 + (y+1)^2 = 25$ is

C \pi/2

 $\pi/8$

If a circle of constant radius 3k passes through the origin and meets the axes at A and B, the locus of the centroid of $\triangle OAB$ is

$$A \qquad x^2 + y^2 = k^2$$

$$B x^2 + y^2 = 2k^2$$

$$C \quad x^2 + y^2 = 3k^2$$

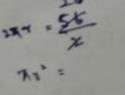
- A circle passes through a fixed point A and cuts two perpendiculars straight lines 59 through A in B and C. If the straight line BC passes through a fixed point (x1, y1), the locus of the centre of the circle is

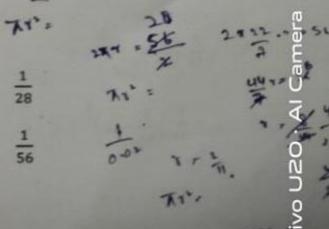
$$A \qquad \frac{x_1}{x} + \frac{y_1}{y} = 1$$

B
$$x_1y = xy_1$$

$$C \quad x_1y + xy_1 = 2$$

$$D \frac{x_1}{x} + \frac{y_1}{y} = 2$$


SSF JAMIA MILLIA ISLAMIA **New Delhi**


The range of the function $f(x) = \frac{1+x^2}{x^2}$ is equal to 60

The circumference of a circle is measured as 56 cm with an error 0.02 cm. The 61

$$A = \frac{1}{7}$$

$$C = \frac{1}{14}$$

The value of c in Lagrange's theorem for the function f(x) = |x| in the interval

- A 0
- $C = \frac{-1}{2}$

- $B = \frac{1}{2}$
- D non-existent in the interval

SSF JAMIA MILLIA ISLAMIA New Delhi

63 The function $f(x) = x^3 - 3x$, is

- A Increasing on $(-\infty, -1) \cup [1, \infty)$ and decreasing on (-1, 1)
- B decreasing on $(-\infty, -1) \cup [1, \infty)$ and increasing on (-1, 1)
- C increasing on $(0, \infty)$ and decreasing on $(-\infty, 0)$
- D decreasing on $(0, \infty)$ and increasing on $(-\infty, 0)$

64 Let
$$(x) = 1 + 2x^2 + 2^2x^4 + ... + 2^{10}x^{20}$$
. Then, $f(x)$ has

- A more than one minimum
- B exactly one minimum
- C at least one maximum
- D none of these

65
$$\int \frac{(x-x^5)^{\frac{1}{8}}}{x^6} dx \text{ is equal to}$$

$$A = \frac{5}{54} \left(\frac{1}{x^4} - 1 \right)^{\frac{6}{5}} + C$$

B
$$\frac{5}{24} \left(1 - \frac{1}{x^4}\right)^{\frac{5}{5}} + C$$

$$C -\frac{5}{54} \left(\frac{1}{x^4} - 1\right)^{\frac{6}{5}} + C$$

D None of these

66 If
$$\int f(x)dx = f(x)$$
, $\int \{f(x)\}^2 dx$ is equal to

$$A = \frac{1}{2} \{f(x)\}^2$$

B
$$\{f(x)\}^3$$

D
$$\{f(x)\}^2$$

$$\frac{1}{67} \int_{-1}^{10} sgn(x - [x]) dx \text{ equals}$$

SSF JAMIA MILLIA ISLAMIA **New Delhi**

68
$$\int_1^4 log_e[x] dx$$
 equals

69 The value of
$$\int_0^{\frac{\pi}{2}} \log \tan x \, dx$$
, is

B
$$\frac{\pi}{2}$$
 $\left(\frac{1}{69mx}, \frac{1}{14x^2}\right)$.

D none of these $\frac{1}{0}$: $\frac{1}{m}$

70
$$\lim_{n\to\infty} \left\{ \frac{n}{n^2+1^2} + \frac{n}{n^2+2^2} + \dots + \frac{n}{n^2+n^2} \right\}$$
, is equal to

$$\frac{\pi}{2}$$

- 71 The domain of $f(x) = \frac{Log_2(x+3)}{x^2+3x+2}$ is
 - A R-{-1, -2}

B (-2, ∞)

C R-{-1, -2, -3}

- D (-3, ∞)-{-1, -2}
- If $f: R \to R$ is a function satisfying the property f(2x + 3) + f(2x + 7) = 2 for all $x \in R$, then the period of f(x) is
 - A 2

B 4

C 8

D 12

SSF JAMIA MILLIA ISLAMIA New Delhi

- If f(x) is defined on [0, 1] by the rule $f(x) = \begin{cases} x \\ 1-x \end{cases}$ if $x \in Q$ and if $x \notin Q$ Then, for all $x \in [0, 1]$, $f(f(x)) = \{x \in Q \text{ and } f(x) \in$
 - A x

B -x

C 1+x

- D 1-x
- 74 $\lim_{x\to\infty} \left(\frac{x^2+4x-3}{x^2-2x+5}\right)^x$ is equal to
 - A e

 e^{-6}

 $C e^2$

 $D e^4$

75 If $\log_{x\to a} \frac{a^x - x^a}{x^x - a^a} = -1$, then the values of a is

A 1

B 0

C e

D None of these

76 If $g(x) = (x^2 + 2x + 3)f(x)$, f(0) = 5 and $\lim_{x \to 0} \frac{f(x) - 5}{x} =$, then g'(x) is equal

SSF JAMIA MILLIA ISLAMIA New Delhi

A 22

B 20

C 18

D None of these

77 The function f(x) = x - [x], where [.] denotes the greatest integer function

- is
- A Continuous everywhere
- B Continuous at integer point only
- C Continuous at non-integer points only
- D Nowhere continuous

78 If $y = sec(tan^{-1}x)$, then $\frac{dy}{dx}$ at x = 1 is equal to

A $\frac{1}{\sqrt{2}}$

 $B = \frac{1}{2}$

C 1

 $D \sqrt{2}$

- 79 The curve $y e^{xy} + x = 0$ has a vertical tangent at the point:
 - A (1, 1)

B at no point

C (0, 1)

- D (1,0)
- The surface area of a sphere when its volume is increasing at the same rate as its radius, is
 - A 1

- $B \qquad \frac{1}{2\sqrt{\pi}}$
- Ary SA

· C · 4π

 $D = \frac{4\pi}{3}$

SSF JAMIA MILLIA ISLAMIA New Delhi

- If z_1, z_2 be any two non-zero complex numbers such that $|z_1 + z_2| = |z_1| + |z_2|$, then $\arg(z_1) \arg(z_2)$ is equal to
 - $A -\pi$

 $B - \frac{\pi}{2}$

C 0

- $D = \frac{\pi}{2}$
- If $1, \alpha_1, \alpha_2, ..., \alpha_{n-1}$ are n^{th} roots of unity, then the value of $(1 \alpha_1)(1 \alpha_2)(1 \alpha_3) ... (1 \alpha_{n-1})$ is equal to
 - $A \sqrt{3}$

B $\frac{1}{2}$

C n

83 If $(\sqrt{3}-i)^n=2^n, n\in \mathbb{Z}$ then n is multiple of

10

12 D

If $log_5 2$, $log_5 (2^x - 3)$ and $log_5(\frac{17}{2} + 2^{x-1})$ are in AP, then the value of x is

D None of these

If the first and the n^{th} terms of a G.P. are a and b respectively and P is the product of the first *n* terms, then $P^2 =$

ab

B (ab)ⁿ

 $C \qquad (ab)^{\frac{n}{2}}$

D $(ab)^{2n}$

SSF JAMIA MILLIA ISLAMIA New Delhi

If x > l, y > 1, z > 1 are in G.P., then $\frac{1}{1+lnx}$, $\frac{1}{1+lny}$, $\frac{1}{1+lnz}$ are in 86

A AP

B HP

C GP

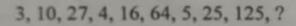
None of these D

- 87 The sum of the series $1 + 3x + 6x^2 + 10x^3 + ... \infty$ is
 - $A = \frac{1}{(1-x)^2}$

B 1/1-x

 $C = \frac{1}{(1+x)^2}$

- $D = \frac{1}{(1-x)^3}$
- 88 Find the missing term in 3, 10, 29, 66, 127, ?
 - A 164


B 187

C 216

D 218

SSF JAMIA MILLIA ISLAMIA New Delhi

89 Find out the wrong term in the following series

A 3

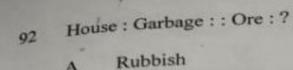
B 4

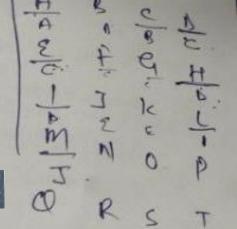
C 10

- D 27
- 90 Monday: Saturday:: Thursday:?
 - A Sunday

B Tuesday

C Wednesday


- D Friday
- 91 Genuine : Authentic : : Mirage : ?
 - A Reflection


B Hideout

C Illusion

D Image

93 Select the odd one

A

of If DELHI can be coded as CCIDD, how would you code BOMBAY?

C MJXVSU

D WXYZAX

If
$$A = 26$$
, SUN = 27, then CAT = ?

96 If ENGLAND is written as 1234526 and FRANCE is written as 785291, how is GREECE coded?

97	Poi	nting to a gentleman, Deepak s	aid, "	His only b	rother is the	e father of my
	dau	ghter's father." How is the gentler	man re	lated to De	epak?	
	A	Grandfather	В	Father		
09	С	Brother-in-law	D	Uncle		,F -
		SSF JAMIA MI New I		SLAMIA		70
8	Roh	an walks a distance of 3 km tov	wards	North, ther	turns to hi	is left and walks
	for 2	2 km. He again turns left and wa	ilks for	r 3 km. At	this point h	e turns to his left
	and	walks for 3 km. How many kilor	meters	is he from	the starting	g point?-
	A	1 km	В	2 km		37
	C	3 km	D	5 km	V	
		. 01-4				
9	Rea	d the following arrangement care	efully:			3 3
	R _. E	5DAP\$3TIQ79B#2K9	4.U.J	M W 4 * J	8 N .	
	Whi	ch one of the following is exact	ly in t	he middle	between 3	and 1 in the above
	arrai	ngement?				
	A	В	В	K		
	C	9	D	, #		
			-	4		

100 Read the following arrangement carefully: RE\$DAP\$3TIQ79B#2K%U1MW4*J8N

How many such vowels are there in the above arrangement, each of which is immediately followed by a number but not immediately preceded by a

immediate?		SSF JAMIA MILLIA ISLAMIA New Delhi			
con.	sonant?	В	One		
A	Tions	D	Three		
0	Two	-			