| A | servation laws are generally the | consequenc | | |---|---|---|--| | A. | symmetry | В. | asymmetry | | <u>C.</u> | isotropy | D. | homogeneity | | Homoge | neity of time leads to the conse | ervation of | | | Α. | linear momentum | В. | Angular momentum | | C. | kinetic energy | D. | total energy | | | and \vec{v}_{12}' be the relative velocit | | | | before a | and after collision, ε is the coeff | iclent of rest | tution, then | | Α | $\vec{v}_{12}' = \varepsilon(\vec{v}_{12})$ | В. | $\vec{v}_{12}' = \vec{v}_{12}/\varepsilon$ | | . C. | $\vec{v}_{12}' = -\varepsilon(\vec{v}_{12})$ | D. | $\vec{v}_{12}' = \varepsilon / \vec{v}_{12}$ | | . An expl | ocion blows a rocket into thre | e parts. Two | pieces go off at right angles to | | nach ne | hare 1 kg nines with vallacity of | 12 ms and | other 2 kg piece with velocity a | | ms ⁻¹ . If | the third piece flies of with a ve | locity of 40 n | ns ⁻¹ , then the mass (in kg) of the | | third pi | | | A PLANTAGE STREET | | A. | 0.2 | В. | 0.3 | | C. | 0.4 | D. | 0.5 | | 5. A parti | cle of mass m moves in a circula | r orbit of rad | ius r having angular momentum | | Labout | t its centre. The kinetic energy o | f particle is | | | A. | 1./mr2 | В. | $L^2/2mr^2$ | | | | D. | L^2/m^2r^2 | | 6. A sph | ere of mass M_1 moving with
of mass M_2 at rest. After or | velocity v_1 collision of the city, the ratio | collides elastically with another two spheres they moves in of their masses M_1/M_2 are | | 6. A sph
sphere
opposi
A. | here of mass M_1 moving with of mass M_2 at rest. After of the directions with the same velocity $1/2$ | city, the ratio | of their masses M_1/M_2 are 1/3 | | opposi
A. | te directions with the same velo | B. D. | of their masses M_1/M_2 are | | opposi
A. |
te directions with the same velocite directions with the same velocite 2/3 F be a conservative force field, t | B. D. | of their masses M_1/M_2 are 1/3 3/5 | | sphere opposi
A.
C.
7. If | of mass M_2 at rest. After the directions with the same velocity $1/2$ and $2/3$ \vec{F} be a conservative force field, the $\nabla^2 \vec{F} = 0$ | B. D. | of their masses M_1/M_2 are $ \begin{array}{c} 1/3 \\ 3/5 \end{array} $ $ \nabla \vec{F} = 0$ $ \nabla \vec{F} = 0$ | | sphere opposi
A.
C.
7. If | of mass M_2 at rest. After the directions with the same velocity $1/2$ and $2/3$ \vec{F} be a conservative force field, the $\nabla^2 \vec{F} = 0$ | B. D. | of their masses M_1/M_2 are $ \begin{array}{c} 1/3 \\ 3/5 \end{array} $ $ \nabla \vec{F} = 0$ $ \nabla \vec{F} = 0$ | | sphere opposi | to of mass M_2 at rest. After the directions with the same velocite directions with the same velocity $\frac{1}{2}$ \vec{F} be a conservative force field, to $\nabla^2 \vec{F} = 0$ $\nabla \cdot \vec{F} = 0$ Finisher of mass m moves on a particle m moves on a particle of mass m m m m m m m m m m m m m m m m m | B. D. | of their masses M_1/M_2 are $ \begin{array}{c} 1/3 \\ 3/5 \end{array} $ $ \nabla \vec{F} = 0$ $ \nabla \vec{F} = 0$ | | sphere opposi | to of mass M_2 at rest. After the directions with the same velocite directions with the same velocity $\frac{1}{2}$ \vec{F} be a conservative force field, to $\nabla^2 \vec{F} = 0$ $\nabla \cdot \vec{F} = 0$ Finisher of mass m moves on a particle m moves on a particle of mass m m m m m m m m m m m m m m m m m | botty, the ratio | of their masses M_1/M_2 are $ \begin{array}{c} 1/3 \\ 3/5 \end{array} $ $ \nabla \vec{F} = 0$ $ \nabla \times \vec{F} = 0$ $ \vec{r} = a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}. \text{ The}$ | | sphere opposition A. C. 7. If A. C. 8. A part angula | for mass M_2 at rest. After the directions with the same velocite directions with the same velocite $1/2$ $2/3$ \vec{F} be a conservative force field, the $\nabla^2 \vec{F} = 0$ $\nabla \cdot \vec{F} = 0$ Ticle of mass m moves on a particle of mass m moves on a particle is 0 | boilision of the cocity, the ratio | of their masses M_1/M_2 are $ \begin{array}{ccc} 1/3 \\ 3/5 \end{array} $ $ \nabla \vec{F} = 0 \\ \nabla \times \vec{F} = 0 $ $ \vec{r} = a \cos\omega t \hat{\imath} + b \sin\omega t \hat{\jmath}. \text{ The} $ $ \begin{array}{ccc} mab\omega \hat{k} \end{array} $ | | sphere opposition A. C. 7. If A. C. 8. A part angula A. C. | of mass M_2 at rest. After the directions with the same velocite directions with the same velocite $\frac{1}{2}$ \vec{F} be a conservative force field, the $\nabla^2 \vec{F} = 0$ $\nabla \cdot \vec{F} = 0$ Sticle of mass m moves on a paramomentum of the particle is 0 $ma^2b^2\omega^2\hat{k}$ | beity, the ratio | of their masses M_1/M_2 are $ \begin{array}{c} 1/3 \\ 3/5 \end{array} $ $ \nabla \vec{F} = 0$ $ \nabla \times \vec{F} = 0$ $ \vec{F} = a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}. \text{ The}$ $ \begin{array}{c} mab\omega \hat{k} \\ \frac{1}{2}(ma^2b^2\omega^2)\hat{k} \end{array} $ | | sphere opposition A. C. 7. If A. C. 8. A part angula A. C. | of mass M_2 at rest. After the directions with the same velocite directions with the same velocite $\frac{1}{2}$ \vec{F} be a conservative force field, the $\nabla^2 \vec{F} = 0$ $\nabla \cdot \vec{F} = 0$ Sticle of mass m moves on a paramomentum of the particle is 0 $ma^2b^2\omega^2\hat{k}$ | beity, the ratio | of their masses M_1/M_2 are $ \begin{array}{c} 1/3 \\ 3/5 \end{array} $ $ \nabla \vec{F} = 0$ $ \nabla \times \vec{F} = 0$ $ \vec{F} = a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}. \text{ The}$ $ \begin{array}{c} mab\omega \hat{k} \\ \frac{1}{2}(ma^2b^2\omega^2)\hat{k} \end{array} $ | | sphere opposition A. C. 7. If A. C. 8. A part angula A. C. | of mass M_2 at rest. After the directions with the same velocite directions with the same velocite $\frac{1}{2}$ \vec{F} be a conservative force field, the $\nabla^2 \vec{F} = 0$ $\nabla \cdot \vec{F} = 0$ Sticle of mass m moves on a paramomentum of the particle is 0 $ma^2b^2\omega^2\hat{k}$ | beity, the ratio | of their masses M_1/M_2 are $ \begin{array}{c} 1/3 \\ 3/5 \end{array} $ $ \nabla \vec{F} = 0$ $ \nabla \times \vec{F} = 0$ $ \vec{F} = a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}. \text{ The}$ $ \begin{array}{c} mab\omega \hat{k} \\ \frac{1}{2}(ma^2b^2\omega^2)\hat{k} \end{array} $ | | sphere opposition A. C. 7. If A. C. 8. A part angula A. C. 9. If \vec{a} as | of mass M_2 at rest. After \vec{c} ite directions with the same velocite $1/2$ $2/3$ \vec{F} be a conservative force field, to $\nabla^2 \vec{F} = 0$ $\nabla \cdot \vec{F} = 0$ Sticle of mass m moves on a part momentum of the particle is 0 $ma^2b^2\omega^2\hat{k}$ and \vec{b} are two vectors then the value $\vec{a} \times \vec{b}$ | botty, the ratio B . D. hen B. D. th given by \overline{b} B. D. ue of $(\overline{a} + \overline{b})$ | of their masses M_1/M_2 are $ \begin{array}{c} 1/3 \\ 3/5 \end{array} $ $ \nabla \vec{F} = 0$ $ \nabla \times \vec{F} = 0$ $ \vec{F} = a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}. \text{ The}$ $ \begin{array}{c} mab\omega \hat{k} \\ \frac{1}{2} (ma^2 b^2 \omega^2) \hat{k} \\ \times (\vec{a} - \vec{b}) \text{ is} \\ -2(\vec{b} \times \vec{a}) \end{array} $ | | sphere opposition of the composition composi | of mass M_2 at rest. After the directions with the same velocite directions with the same velocite $1/2$ $2/3$ \vec{F} be a conservative force field, the $\nabla^2 \vec{F} = 0$ $\nabla \cdot \vec{F} = 0$ Sticle of mass m moves on a paramomentum of the particle is 0 $ma^2b^2\omega^2\hat{k}$ $md\vec{b}$ are two vectors then the value $\vec{a} \times \vec{b}$ | bolision of the cocity, the ratio B . D. hen B. D. th given by B . D. ue of $(\vec{a} + \vec{b})$ B. D. | of their masses M_1/M_2 are $ \begin{array}{c} 1/3 \\ 3/5 \end{array} $ $ \nabla \vec{F} = 0$ $ \nabla \times \vec{F} = 0$ $ \vec{r} = a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}. \text{ The}$ $ \begin{array}{c} mab\omega \hat{k} \\ \frac{1}{2} (ma^2 b^2 \omega^2) \hat{k} \\ 3 \times (\vec{a} - \vec{b}) \text{ is} \\ -2(\vec{b} \times \vec{a}) \\ 2(\vec{b} \times \vec{a}) \end{array} $ | | sphere opposition of the composition composi | of mass M_2 at rest. After the directions with the same velocite directions with the same velocite $1/2$ $2/3$ \vec{F} be a conservative force field, the $\nabla^2 \vec{F} = 0$ $\nabla \cdot \vec{F} = 0$ Sticle of mass m moves on a paramomentum of the particle is 0 $ma^2b^2\omega^2\hat{k}$ $md\vec{b}$ are two vectors then the value $\vec{a} \times \vec{b}$ | bolision of the cocity, the ratio B . D. hen B. D. th given by B . D. ue of $(\vec{a} + \vec{b})$ B. D. | of their masses M_1/M_2 are $ \begin{array}{c} 1/3 \\ 3/5 \end{array} $ $ \nabla \vec{F} = 0$ $ \nabla \times \vec{F} = 0$ $ \vec{r} = a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}. \text{ The}$ $ \begin{array}{c} mab\omega \hat{k} \\ \frac{1}{2} (ma^2 b^2 \omega^2) \hat{k} \\ 3 \times (\vec{a} - \vec{b}) \text{ is} \\ -2(\vec{b} \times \vec{a}) \\ 2(\vec{b} \times \vec{a}) \end{array} $ | | sphere opposition of the composition composi | of mass M_2 at rest. After the directions with the same velocite directions with the same velocite $1/2$ $2/3$ \vec{F} be a conservative force field, the $\nabla^2 \vec{F} = 0$ $\nabla \cdot \vec{F} = 0$ Sticle of mass m moves on a paramomentum of the particle is 0 $ma^2b^2\omega^2\hat{k}$ $md\vec{b}$ are two vectors then the value $\vec{a} \times \vec{b}$ | bolision of the cocity, the ratio B . D. hen B. D. th given by B . D. ue of $(\vec{a} + \vec{b})$ B. D. | of their masses M_1/M_2 are $ \begin{array}{c} 1/3 \\ 3/5 \end{array} $ $ \nabla \vec{F} = 0$ $ \nabla \times \vec{F} = 0$ $ \vec{r} = a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}. \text{ The}$ $ \begin{array}{c} mab\omega \hat{k} \\ \frac{1}{2}(ma^2b^2\omega^2)\hat{k} \\ \times (\vec{a} - \vec{b}) \text{ is} \\ -2(\vec{b} \times \vec{a}) \\ 2(\vec{b} \times \vec{a}) \end{array} $ | | sphere opposite A. C. 7. If A. C. 8. A part angula A. C. 9. If \vec{a} ar A. C. 10. Three contents are also as a content and a content and a content and a content a content a content a content a content a co | of mass M_2 at rest. After to the directions with the same velocite directions with the same velocite $1/2$ $2/3$ \vec{F} be a conservative force field, to $\nabla^2 \vec{F} = 0$ $\nabla \cdot \vec{F} = 0$ Sticle of mass m moves on a part momentum of the particle is 0 $ma^2b^2\omega^2\hat{k}$ $\vec{a} \times \vec{b}$ $\vec{a} \times \vec{b}$ $\vec{b} \times \vec{a}$ The identical particles with velocities are the other in such a way that the same velocities are the other in such a way that the same velocities are the other in such a way that the same velocities with velocities are the other in such a way that the same velocities are the same velocities with velocities are the other in such a way that the same velocities with velocities with other in such a way that the same velocities with veloci | bolision of the city, the ratio B . D. hen B. D. th given by \overline{b} B. D. ue of $(\overline{a} + \overline{b})$ B. D. cites $v_0 \hat{i}, -3v_0$ hey form a signature. | of their masses M_1/M_2 are $1/3$ $3/5$ $\nabla \vec{F} = 0$ $\nabla \times \vec{F} = 0$ $\vec{r} = a \cos \omega t \ \hat{\imath} + b \sin \omega t \ \hat{\jmath}$. The $mab\omega \hat{k}$ $\frac{1}{2}(ma^2b^2\omega^2)\hat{k}$ $\times (\vec{a} - \vec{b})$ is $-2(\vec{b} \times \vec{a})$ $2(\vec{b} \times \vec{a})$ $2(\vec{b} \times \vec{a})$ and $5v_0\hat{k}$ collides successively ngle particle. The velocity vectors | | sphere opposition of the composition composi | of mass M_2 at rest. After to the directions with the same
velocite directions with the same velocite directions with the same velocite $1/2$ $2/3$ \vec{F} be a conservative force field, to $\nabla^2 \vec{F} = 0$ $\nabla \cdot \vec{F} = 0$ Sticle of mass m moves on a particle of mass m moves on a particle is 0 $ma^2b^2\omega^2\hat{k}$ $\vec{a} \times \vec{b}$ $\vec{a} \times \vec{b}$ $\vec{b} \times \vec{a}$ The identical particles with velocities each other in such a way that the resultant particle is | bolision of the city, the ratio B . D. hen B. D. th given by B . B. D. ue of $(\vec{a} + \vec{b})$ B. D. cites $v_0 \hat{i}, -3v_0$ hey form a sign. | of their masses M_1/M_2 are $1/3$ $3/5$ $\nabla \vec{F} = 0$ $\nabla \times \vec{F} = 0$ $\vec{r} = a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$. The $a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\imath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \hat$ | | sphere opposition of the composition composi | of mass M_2 at rest. After to the directions with the same velocite directions with the same velocite directions with the same velocite $1/2$ $2/3$ \vec{F} be a conservative force field, to $\nabla^2 \vec{F} = 0$ $\nabla \cdot \vec{F} = 0$ Sticle of mass m moves on a particle of mass m moves on a particle is 0 $ma^2b^2\omega^2\hat{k}$ $\vec{a} \times \vec{b}$ $\vec{a} \times \vec{b}$ $\vec{b} \times \vec{a}$ The identical particles with velocities each other in such a way that the resultant particle is | bolision of the city, the ratio B . D. hen B. D. th given by B . B. D. ue of $(\vec{a} + \vec{b})$ B. D. cites $v_0 \hat{i}, -3v_0$ hey form a sign. | of their masses M_1/M_2 are $1/3$ $3/5$ $\nabla \vec{F} = 0$ $\nabla \times \vec{F} = 0$ $\vec{r} = a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$. The $a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\imath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \hat$ | | sphere opposition of the composition composi | of mass M_2 at rest. After to the directions with the same velocite directions with the same velocite directions with the same velocite $1/2$ $2/3$ \vec{F} be a conservative force field, to $\nabla^2 \vec{F} = 0$ $\nabla \cdot \vec{F} = 0$ Sticle of mass m moves on a particle of mass m moves on a particle is 0 $ma^2b^2\omega^2\hat{k}$ $\vec{a} \times \vec{b}$ $\vec{a} \times \vec{b}$ $\vec{b} \times \vec{a}$ The identical particles with velocities each other in such a way that the resultant particle is | bolision of the city, the ratio B . D. hen B. D. th given by B . B. D. ue of $(\vec{a} + \vec{b})$ B. D. cites $v_0 \hat{i}, -3v_0$ hey form a sign. | of their masses M_1/M_2 are $1/3$ $3/5$ $\nabla \vec{F} = 0$ $\nabla \times \vec{F} = 0$ $\vec{r} = a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$. The $a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\imath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \hat$ | | sphere opposition of the A. C. 11. The | of mass M_2 at rest. After to the directions with the same velocite directions with the same velocite directions with the same velocity $2/3$ \vec{F} be a conservative force field, the $\nabla^2 \vec{F} = 0$ $\nabla \cdot \vec{F} = 0$ Sticle of mass m moves on a particle of mass m moves on a particle is 0 $ma^2b^2\omega^2\hat{k}$ $\vec{a} \times \vec{b}$ $\vec{b} \times \vec{a}$ The identical particles with velocity each other in such a way that the resultant particle is $v_0/3(\hat{i}+\hat{j}+\hat{k})$ $v_0/3(\hat{i}-3\hat{j}+\hat{k})$ Extends work done on a particle is | bolision of the city, the ratio B . D. hen B. D. th given by B . B. D. ue of $(\vec{a} + \vec{b})$ B. D. cites $v_0 \hat{i}, -3v_0$ hey form a sign. | $ \begin{array}{c c} \hline 1/3 \\ \hline 3/5 \\ \hline \hline V\vec{F} = 0 \\ \hline \vec{V} \times \vec{F} = 0 \\ \vec{F} = a\cos\omega t \hat{t} + b\sin\omega t \hat{j}. \text{ The} \\ \hline mab\omega \hat{k} \\ \hline \frac{1}{2}(ma^2b^2\omega^2)\hat{k} \\ \hline \times (\vec{a} - \vec{b}) \text{ is} \\ \hline -2(\vec{b} \times \vec{a}) \\ \hline 2(\vec{b} 2(b$ | | sphere opposition of the composition composi | of mass M_2 at rest. After to the directions with the same velocite directions with the same velocite directions with the same velocite $1/2$ $2/3$ \vec{F} be a conservative force field, to $\nabla^2 \vec{F} = 0$ $\nabla \cdot \vec{F} = 0$ Sticle of mass m moves on a particle of mass m moves on a particle is 0 $ma^2b^2\omega^2\hat{k}$ $\vec{a} \times \vec{b}$ $\vec{a} \times \vec{b}$ $\vec{b} \times \vec{a}$ The identical particles with velocities each other in such a way that the resultant particle is | bolision of the city, the ratio B . D. hen B. D. th given by B . B. D. ue of $(\vec{a} + \vec{b})$ B. D. cites $v_0 \hat{i}, -3v_0$ hey form a sign. | of their masses M_1/M_2 are $1/3$ $3/5$ $\nabla \vec{F} = 0$ $\nabla \times \vec{F} = 0$ $\vec{r} = a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$. The $a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\imath} + b \sin \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\imath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath} + b \cos \omega t \hat{\jmath}$ and $a \cos \omega t \hat{\jmath} + b \hat$ | | | article moves along the x-axis from a given by $\vec{F} = (7 - 2x + 3x^2)\hat{\imath} N$. | | | |-------------|--
--|---------------------------------| | . A. | 360J | B. | 85J | | C | 1851 | D. | 135J | | | velocity of the electron in the first | The second secon | | | abou | ut | BOTH & OLD | it as compared to that of fight | | A. | 1/300 | 8. | 1/500 | | C. | 1/137 | D. ' | 1/187 | | 14. Tha | t light is a wave is evidenced by | 0. | 1/10/ | | A. | Black body radiation | В. | Photoelectric effect | | C. | Radioactive emission | D. | Interference phenomenon | | 5. Who | en light wave is reflected from glass | air interf | the change of phase of the | | refle | cted wave is | -air interia | ace, the change of phase of th | | A. | π | В. | 2π | | C. | 0 | D. | | | 6. The | radii of dark Newton's rings are pro | nortional t | | | A | even natural numbers | B | odd natural numbers | | C | all natural numbers | D | | | 7. If D | be the distance between the screen | | none of these | | widt λ is | h of the central maximum in the dif | fraction p | attern with light of wavelengt | | Α. | $D\lambda/2b$ | B. | 2Dλ/b | | C. | b/2DX | D. | b2/2D | | 8. In trans | Nicol prism, the O-ray is totally mitted. This statement is | internally | reflected and the E-ray i | | A. | true | В. | false | | C. | partly true | D. | partly false | | 9. Whe | n the O-ray and E-ray travel along th | ne optic ax | | | · A. | $\mu_{e} > \mu_{o}$ | В. | $\mu_0 < \mu_0$ | | C. | $\mu_e = \mu_o$ | D. | $\mu_e = 1/\mu_o$ | | 0. The | standard wavelength (in nm) emitte | d from He- | Ne laser is | | A. | 543.2 | В. | 595.2 | | C. | 632.8 | D. | 635.8 | | | lasers population inversion is gene | | | | A. | optical pumping | В. | electrical discharge | | C. | thermally | D. | Chemical reactions | | - | lography which one is recorded | | Chemical reactions | | A. | phase information | В. | amplitude information | | C. | both phase and amplitude | D. | Intensity information | | and the | information . | | intensity unormation | | 71. | | of the are | ter of | | | Irift velocity of electron in a metal is | B. | $3 \times 10^6 ms^{-1}$ | | A. | $3 \times 10^8 ms^{-1}$ | | 100 ms ⁻¹ | | C. | 10 mms ⁻¹ | D. | 100 ms | | . Two | ong parallel conductors carrying cu | | e same direction | | A. | repel each other | B. | Attract each other | | C. | do not interact | D. | none of these | M25 M.Sc Physics SETA | 25. ITE | and $arepsilon_0$ be the permitti | Vity of a material and | ε | |---|---|---
--| | Α. | $\varepsilon_{r} = \frac{\varepsilon_0}{\varepsilon}$ | В. | $\mathcal{E}_{T} = \frac{1}{\mathcal{E}_{0}}$ | | c. | $\varepsilon_{\tau} = \varepsilon \varepsilon_0$ | D. | $\varepsilon_{r} = \frac{1}{\varepsilon \varepsilon_{0}}$ | | | | | | | 26. The | dipolar polarizability a | t _d is equal to B. | $\mu^2/3kT$ | | A. | μ^2/kT | D. | μ^2/kT | | C. | $3kT/\mu^2$ | | The street of th | | 77 Dois | son's equation in elect | rostatics is given by | ρ ρ | | A. | $\nabla^2 V = Constant$ | В. | $\nabla^2 V = -\frac{\rho}{\varepsilon_0}$ | | C. | $\nabla^2 V = \frac{\rho}{\epsilon_0}$ | D. | $\Delta_5 \Lambda = -b\epsilon_0$ | | L. | $\nabla^2 V = \frac{1}{\epsilon_0}$ | 1 411 | ie | | dia di ne | " dried coordinates th | ie volume element av | ρdρdφdz | | 28. In cy
A. | $\frac{\varepsilon_0}{d\rho d\phi dz}$ | В. | ραραφαε | | | | D. | pdpdz
medium of relative permittivity
wave (in ms ⁻¹) is
3×10^6 | | C | puque | and through a | medium of relative permit | | no If an | electromagnetic wave | propagates chocity of | wave (in ms ⁻¹) ls | | 4 and | I leignive be | 1, then the velocity of | 3,3 | | The second second | | | | | A. | 3 × 10 ⁸ | D. | 1.5 × 10 ⁶ | | C. 30. Capa | 1.5 × 10 ⁸ citance of a parallel planerence between the two | D.
ate capacitor is 2μF. 1
p plates must change | 1.5 × 10 ⁶ The rate at which the potential to get displacement current of | | A.
C.
30. Capa
differ
0.4 A | 1.5 × 10 ⁸ citance of a parallel planerence between the two | D. ate capacitor is 2µF. 1 p plates must change in B. | 1.5×10^6
The rate at which the potential to get displacement current of 2×10^5 V/s | | A.
C.
30. Capa
differ
0.4 A | $\begin{array}{c} 3 \times 10^{8} \\ \hline 1.5 \times 10^{8} \\ \hline \text{citance of a parallel planemence between the two is} \\ \hline 1.5 \times 10^{3} \text{V/s} \\ \hline \end{array}$ | D. ate capacitor is 2µF. 1 p plates must change in B. D. | 1.5×10^6 The rate at which the potential to get displacement current of $2 \times 10^5 \text{ V/s}$ $1.5 \times 10^{-3} \text{ V/s}$ | | A.
C.
30. Capa
differ
0.4 A | $\begin{array}{c} 3 \times 10^{8} \\ \hline 1.5 \times 10^{8} \\ \hline \text{citance of a parallel planemence between the two is} \\ \hline 1.5 \times 10^{3} \text{V/s} \\ \hline \end{array}$ | D. ate capacitor is 2µF. 1 p plates must change in B. D. | 1.5×10^6 The rate at which the potential to get displacement current of $2 \times 10^5 \text{ V/s}$ $1.5 \times 10^{-3} \text{ V/s}$ | | A.
C.
30. Capa
differ
0.4 A | $\begin{array}{c} 3 \times 10^{8} \\ \hline 1.5 \times 10^{8} \\ \hline \text{citance of a parallel planemence between the two is} \\ \hline 1.5 \times 10^{3} \text{V/s} \\ \hline \end{array}$ | D. ate capacitor is 2µF. 1 p plates must change in B. D. | 1.5×10^6 The rate at which the potential to get displacement current of $2 \times 10^5 \text{ V/s}$ $1.5 \times 10^{-3} \text{ V/s}$ | | A. C. 30. Capal differ 0.4 A A. C. | citance of a parallel plane
rence between the two
is $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | D. The plane of t | 1.5×10^{6} The rate at which the potential to get displacement current of $2 \times 10^{5} \text{ V/s}$ $1.5 \times 10^{-3} \text{ V/s}$ $\widehat{k} \text{ is solenoidal for }$ $\alpha = \infty$ | | A. C. 30. Capa differ 0.4 A A. C. A. C. | 1.5 × 10 ⁸ citance of a parallel planere between the two is 1.5 × 10 ³ V/s 2 × 10 ⁻⁵ V/s $2 \times 10^{-5} \text{ V/s}$ | D. ate capacitor is $2\mu F$. To plates must change is B . D. $(y-2z)\hat{j}+(x+\alpha z)$. B. D. Ruantities is independent | 1.5×10^{6} The rate at which the potential to get displacement current of $2 \times 10^{5} \text{ V/s}$ $1.5 \times 10^{-3} \text{ V/s}$ $\widehat{k} \text{ is solenoidal for }$ $\alpha = \infty$ | | A. C. 30. Capa differ 0.4 A A. C. A. C. | 1.5 × 10 ⁸ citance of a parallel planere between the two is 1.5 × 10 ³ V/s 2 × 10 ⁻⁵ V/s $2 \times 10^{-5} \text{ V/s}$ | D. ate capacitor is $2\mu F$. To plates must change is B . D. $(y-2z)\hat{j}+(x+\alpha z)$. B. D. Ruantities is independent | 1.5×10^{6} The rate at which the potential to get displacement current of $2 \times 10^{5} \text{ V/s}$ $1.5 \times 10^{-3} \text{ V/s}$ $\hat{k} \text{ is solenoidal for }$ $\alpha = \infty$ | | A. C. 30. Capa differ 0.4 A A. C. A. C. | citance of a parallel plane
rence between the two
is $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | D. The plates must change by the plates B . D. The plates B by | The rate at which the potential to get displacement current of $2 \times 10^{5} \text{ V/s}$ $1.5 \times 10^{-3} \text{ V/s}$ $1.5 \times 10^{-3} \text{ V/s}$ $\alpha = \infty$ $\alpha = 0$ dent of wavelength in the | | A. C. 30. Capal differ 0.4 A A. C. A. C. A. C. Whice electr A. | citance of a parallel planere between the two is $ \begin{array}{c c} 1.5 \times 10^8 \\ \hline \text{citance of a parallel planere between the two is} \\ \hline 1.5 \times 10^3 \text{ V/s} \\ \hline 2 \times 10^{-5} \text{ V/s} \\ \hline \text{vector } \vec{A} = (x + 3y)\hat{\imath} + 1 \\ \hline \alpha = 2 \\ \alpha = -2 \\ \text{h of the following of the possible properties} \\ \hline k $ | D. ate capacitor is $2\mu F$. To plates must change is B . D. $(y-2z)\hat{j}+(x+\alpha z)\hat{j}$ B. D. quantities is independent in E | The rate at which the potential to get displacement current of $2 \times 10^{5} \text{ V/s}$ $1.5 \times 10^{-3} \text{ V/s}$ $1.5 \times 10^{-3} \text{ V/s}$ $\alpha = \infty$ $\alpha = 0$ dent of wavelength in the ω | | A. C. 30. Capal differ 0.4 A A. C. A. C. A. C. Whice electr A. C. | citance of a parallel planere between the two is $ \begin{array}{c c} 1.5 \times 10^8 \\ \hline \text{citance of a parallel planere between the two is} \\ \hline 1.5 \times 10^3 \text{ V/s} \\ \hline 2 \times 10^{-5} \text{ V/s} \\ \hline \text{vector } \vec{A} = (x + 3y)\hat{\imath} + \frac{1}{2} \\ \hline \alpha = 2 \\ \hline \alpha = -2 \\ \hline h of the following follow$ | ate capacitor is $2\mu F$. To plates must change in the plates must change in the plates $(y-2z)\hat{j}+(x+\alpha z)\hat{j}$ B. D. Quantities is independent in the plate | The rate at which the potential to get displacement current of $2 \times 10^{5} \text{ V/s}$ $2 \times 10^{5} \text{ V/s}$ $1.5 \times 10^{-3} \text{ V/s}$ $\hat{k} \text{ is solenoidal for } \alpha = \infty$ $\alpha = 0$ $\text{dent of wavelength in the}$ ω equency and unit vector along | | A. C. 30. Capal differ 0.4 A A. C. A. C. A. C. Whice electr A. C. | citance of a parallel planere between the two is $ \begin{array}{c c} 1.5 \times 10^8 \\ \hline \text{citance of a parallel planere between the two is} \\ \hline 1.5 \times 10^3 \text{ V/s} \\ \hline 2 \times 10^{-5} \text{ V/s} \\ \hline \text{vector } \vec{A} = (x + 3y)\hat{\imath} + \frac{1}{2} \\ \hline \alpha = 2 \\ \hline \alpha = -2 \\ \hline h of the following follow$ | ate capacitor is $2\mu F$. To plates must change in the plates must change in the plates $(y-2z)\hat{j}+(x+\alpha z)\hat{j}$ B. D. Quantities is independent in the plate | The rate at which the potential to get displacement current of $2 \times 10^5 \text{ V/s}$ $2 \times 10^5 \text{ V/s}$ $1.5 \times 10^{-3} \text{ V/s}$ R is solenoidal for $\alpha = \infty$ $\alpha = 0$ dent of wavelength in the ω equency and unit vector along then | | A. C. 30. Capal differ 0.4 A A. C. A. C. A. C. Whice electr A. C. | citance of a parallel planer between the two is $ \begin{array}{c c} 1.5 \times 10^8 \\ \hline \text{citance of a parallel planer between the two is} \\ \hline 1.5 \times 10^3 \text{ V/s} \\ \hline 2 \times 10^{-5} \text{ V/s} \\ \hline \text{vector } \vec{A} = (x + 3y)\hat{\imath} + 4y 4$ | ate capacitor is $2\mu F$. To plates must change in the plates must change in the plates
$(y-2z)\hat{j}+(x+\alpha z)\hat{j}$ B. D. Quantities is independent in the plate | The rate at which the potential to get displacement current of $2 \times 10^{5} \text{ V/s}$ $2 \times 10^{5} \text{ V/s}$ $1.5 \times 10^{-3} \text{ V/s}$ $\hat{k} \text{ is solenoidal for } \alpha = \infty$ $\alpha = 0$ $\text{dent of wavelength in the}$ ω equency and unit vector along | | A. C. 30. Capa differ 0.4 A A. C. 31. The v A. C. 32. Whice electr A. C. the dir A. | is 1.5×10^8 citance of a parallel planence between the two is $1.5 \times 10^3 \text{V/s}$ $2 \times 10^{-5} \text{V/s}$ $2 \times 10^{-5} \text{V/s}$ $2 \times 10^{-5} \text{V/s}$ $\alpha = 2$ $\alpha = -2$ h of the following | ate capacitor is $2\mu F$. To plates must change in the plates must change in the plates $(y-2z)\hat{j}+(x+\alpha z)\hat{j}$ B. D. Quantities is independent in the plate | The rate at which the potential to get displacement current of $2 \times 10^5 \text{ V/s}$ $2 \times 10^5 \text{ V/s}$ $1.5 \times 10^{-3} \text{ V/s}$ R is solenoidal for $\alpha = \infty$ $\alpha = 0$ dent of wavelength in the ω equency and unit vector along then | | A. C. 30. Capal differ 0.4 A A. C. 31. The v A. C. Whice electr A. C. the dir A. | citance of a parallel planere between the two is $ \begin{array}{c c} 1.5 \times 10^8 \\ \hline citance of a parallel planere between the two is 1.5 \times 10^3 V/s 2 \times 10^{-5} \text{ V/s} \\ \hline cector \vec{A} = (x + 3y)\hat{\imath} + 4y 4$ | ate capacitor is $2\mu F$. To plates must change in the plates must change in the plates E_0 and E_0 are plates in the plate | The rate at which the potential to get displacement current of $2 \times 10^5 \text{ V/s}$ $2 \times 10^5 \text{ V/s}$ $1.5 \times 10^{-3} \text{ V/s}$ $k \text{ is solenoidal for}$ $\alpha = \infty$ $\alpha = 0$ $\text{dent of wavelength in the}$ ω equency and unit vector along the then $k \geq \frac{c}{\omega}$ | | A. C. 30. Capal differ 0.4 A A. C. 31. The v A. C. Whice electr A. C. the dir A. | citance of a parallel planere between the two is $ \begin{array}{c c} 1.5 \times 10^8 \\ \hline citance of a parallel planere between the two is 1.5 \times 10^3 V/s 2 \times 10^{-5} \text{ V/s} \\ \hline cector \vec{A} = (x + 3y)\hat{\imath} + 4y 4$ | ate capacitor is $2\mu F$. To plates must change in the plates must change in the plates E_0 and E_0 are plates in the plate | The rate at which the potential to get displacement current of $2 \times 10^5 \text{ V/s}$ $2 \times 10^5 \text{ V/s}$ $1.5 \times 10^{-3} \text{ V/s}$ k is solenoidal for $\alpha = \infty$ $\alpha = 0$ dent of wavelength in the ω equency and unit vector along the then ω $\omega = 0$ | | A. C. 30. Capal differ 0.4 A A. C. 31. The v A. C. Whice electr A. C. the dir A. | is 1.5×10^8 citance of a parallel planence between the two is $1.5 \times 10^3 \text{V/s}$ $2 \times 10^{-5} \text{V/s}$ $2 \times 10^{-5} \text{V/s}$ $2 \times 10^{-5} \text{V/s}$ $\alpha = 2$ $\alpha = -2$ h of the following | ate capacitor is $2\mu F$. To plates must change in the plates must change in the plates E_0 and E_0 are plates in the plate | The rate at which the potential to get displacement current of $2 \times 10^5 \text{ V/s}$ $2 \times 10^5 \text{ V/s}$ $1.5 \times 10^{-3} \text{ V/s}$ $k \text{ is solenoidal for}$ $\alpha = \infty$ $\alpha = 0$ $\text{dent of wavelength in the}$ ω equency and unit vector along the then $k \geq \frac{c}{\omega}$ | | Spirit Control of the Spirit o | requence of | equinical contractions | | |--|--|--|--| | Α. | Pauli's exclusion principle | 8. | Hook's law | | C. | matter waves | 0. | Uncertainty relation | | 36, | For scattering angle $\varphi=90^\circ$, Com | pton's shif | t Δλ reduces to | | A. | 1 h | В. | h | | erocus and the second | $\frac{1}{mc}(1+\cos\varphi)$ | | mc . | | C | 0 | D. | $\frac{h}{mc}(1-\cos\varphi)$ | | 37. In | photoelectric effect, at stopping po | tential Vo | the photocurrent (1) becomes | | A. | ,00 | В. | constant | | C. | 0 | D. | 1/e of i | | 38. 1 | The Compton wavelength (in Å) for | an electron | is | | Α. | 2.0 | В. | 0. 2 | | C. | 0.02 | D, | 0.002 | | Charleston Co. | le Broglie wavelength is associated | with partic | les in motion only, if it is a | | Α. | charged | 8. | uncharged | | C. | both charged and uncharged | D. | none of these | | and the same of th | uncertainty principle is a conseque | MEDICAL PROPERTY. | · | | A. | dual nature of matter | θ. | wave nature of matter | | C. | particle nature of matter | . D. | none of these | | | electron moving through a potent
elength (in Å) of | B. | 10 | | A.
C. | elength (in Å) of | | | | A.
C.
Z. The | elength (in Å) of 1 100 number of basic crystal system is | В. | 10 | | A.
C.
Z. The
A. | elength (in Å) of 1 100 number of basic crystal system is 4 | B.
D. | 10 1000 | | A.
C.
Z. The
A.
C. | elength (in Å) of 1 100 number of basic crystal system is 4 6 | B.
D. | 10 1000 | | A. C. Z. The A. C. S. Mille | elength (in Å) of 1 100 number of basic crystal system is 4 6 er indices (hki) represents | B.
D. | 10 1000 | | A. C. Z. The A. C. 3. Mille | elength (in Å) of 1 100 number of basic crystal system is 4 6 er indices (hki) represents a set of parallel planes a set of arbitrary plane | B. D. B. D. B. D. | 10 1000 5 7 a particular plane none of these | | A. C. Z. The A. C. 3. Mille A. C. C. 1. The | elength (in Å) of 1 100 number of basic crystal system is 4 6 er indices (hki) represents a set of parallel planes a set of arbitrary plane Miller indices of a plane having | B. D. B. D. B. D. | 10 1000 5 7 a particular plane none of these | | A. C. Z. The A. C. 3. Mille A. C. 1. The respe | elength (in Å) of 1 100 number of basic crystal system is 4 6 er indices (hki) represents a set of parallel planes a set of arbitrary plane Miller indices of a plane having ectively are | B. D. B. D. B. D. | 10 1000 5 7 a particular plane none of these | | A. C. Z. The A. C. 3. Mille A. C. 4. The respe | elength (in Å) of 1 100 number of basic crystal system is 4 6 er indices (hki) represents a set of parallel planes a set of arbitrary plane Miller indices of a plane having ectively are 101 | B. D. B. D. intercepts B. D. | 10
1000
5
7
a particular plane
none of these
2, ∞, ∞ units on a,b,c axes
001
020 | | A. C. (2. The A. C. 3. Mille A. C. 4. The respe A. C. 5. If a | elength (in Å) of 1 100 number of basic crystal system is 4 6 er indices (hki) represents a set of parallel planes a set of arbitrary plane Miller indices of a plane having ectively are 101 0 and r be respectively the lattice of | B. D. B. D. intercepts B. D. | 10
1000
5
7
a particular plane
none of these
2, ∞, ∞ units on a,b,c axes
001
020 | | A. C. 12. The A. C. 3. Mills A. C. 4. The respe A. C. 5. If a | elength (in Å) of 1 100 number of basic crystal system is 4 6 er indices (hki) represents a set of parallel planes a set of arbitrary plane Miller indices of a plane having ectively are 101 | B. D. B. D. intercepts B. D. | 10 1000 5 7 a particular plane none of these 2, ∞, ∞ units on a,b,c axes 001 020 d radius of an atom in a BCC | | A. C. Z. The A. C. 3. Mille A. C. 4. The respe
A. C. 5. If a | elength (in Å) of 1 100 number of basic crystal system is 4 6 er indices (hki) represents a set of parallel planes a set of arbitrary plane Miller indices of a plane having extively are 101 0 and r be respectively the lattice coure, then | B. D. B. D. intercepts B. D. onstant an | 10
1000
5
7
a particular plane
none of these
2, ∞, ∞ units on a,b,c axes
001
020 | | A. C. Z. The A. C. 3. Mille A. C. 4. The respe A. C. i. If a struct A. | elength (in Å) of 1 100 number of basic crystal system is 4 6 er indices (hki) represents a set of parallel planes a set of arbitrary plane Miller indices of a plane having extively are 101 0 and r be respectively the lattice cure, then $r = \frac{\sqrt{3}}{4}a$ | B. D. B. D. intercepts B. D. onstant an | 10 1000 5 7 a particular plane none of these 2, ∞, ∞ units on a,b,c axes 001 020 d radius of an atom in a BCC | | A. C. Z. The A. C. 3. Mille A. C. 1. The respe A. C. i. If a struct A. C. | elength (in Å) of 1 100 number of basic crystal system is 4 6 er indices (hki) represents a set of parallel planes a set of arbitrary plane Miller indices of a plane having ectively are 101 0 and r be respectively the lattice coure, then $r = \frac{\sqrt{3}}{4}a$ $r = a$ | B. D. B. D. intercepts B. D. onstant and | 10 1000 5 7 a particular plane none of these 2, ∞, ∞ units on a,b,c axes 001 020 d radius of an atom in a BCC | | A. C. Z. The A. C. 3. Mille A. C. 4. The respe A. C. 5. If a struct A. | elength (in Å) of 1 100 number of basic crystal system is 4 6 er indices (hki) represents a set of parallel planes a set of arbitrary plane Miller indices of a plane having extively are 101 0 and r be respectively the lattice cure, then $r = \frac{\sqrt{3}}{4}a$ | B. D. B. D. intercepts B. D. constant and | $\begin{vmatrix} 10 \\ 1000 \end{vmatrix}$ 5 7 $\begin{vmatrix} a \text{ particular plane} \\ \text{ none of these} \end{vmatrix}$ 2, ∞ , ∞ units on a,b,c axes $\begin{vmatrix} 001 \\ 020 \\ \text{d radius of an atom in a BCC} \end{vmatrix}$ $r = \frac{\sqrt{2}}{4}a$ $r = \frac{a}{\sqrt{3}}$ | | A. C. Z. The A. C. 3. Mille A. C. 4. The respe A. C. i. If a struct A. | elength (in Å) of 1 100 number of basic crystal system is 4 6 er indices (hki) represents a set of parallel planes a set of arbitrary plane Miller indices of a plane having ectively are 101 0 and r be respectively the lattice coure, then $r = \frac{\sqrt{3}}{4}a$ $r = a$ | B. D. B. D. Intercepts B. D. onstant and B. D. | 10 1000 5 7 a particular plane none of these 2, ∞ , ∞ units on a,b,c axes 001 020 d radius of an atom in a BCC $r = \frac{\sqrt{2}}{4} \frac{a}{a}$ $r = \frac{a}{\sqrt{3}}$ | | A. C. Z. The A. C. 3. Mille A. C. 4. The respe A. C. 5. If a struct A. C. C. The at A. C. | elength (in Å) of 1 100 number of basic crystal system is 4 6 er indices (hki) represents a set of parallel planes a set of arbitrary plane Miller indices of a plane having ectively are 101 0 and r be respectively the lattice cure, then $r = \frac{\sqrt{3}}{4}a$ $r = a$ omic packing factor for FCC structu 74% 68% | B. D. B. D. intercepts B. D. constant and | $\begin{vmatrix} 10 \\ 1000 \end{vmatrix}$ 5 7 $\begin{vmatrix} a \text{ particular plane} \\ \text{ none of these} \end{vmatrix}$ 2, ∞ , ∞ units on a,b,c axes $\begin{vmatrix} 001 \\ 020 \\ \text{d radius of an atom in a BCC} \end{vmatrix}$ $r = \frac{\sqrt{2}}{4}a$ $r = \frac{a}{\sqrt{3}}$ | | A. C. Z. The A. C. 3. Mille A. C. 4. The respe A. C. 5. If a struct A. C. C. The at A. C. | elength (in Å) of 1 100 number of basic crystal system is 4 6 er indices (hki) represents a set of parallel planes a set of arbitrary plane Miller indices of a plane having ectively are 101 0 and r be respectively the lattice cure, then $r = \frac{\sqrt{3}}{4}a$ $r = a$ omic packing factor for FCC structu 74% 68% | B. D. B. D. intercepts B. D. onstant and B. D. | 10 1000 5 7 a particular plane none of these 2, ∞ , ∞ units on a,b,c axes 001 020 d radius of an atom in a BCC $r = \frac{\sqrt{2}}{4} \frac{a}{a}$ $r = \frac{\sqrt{3}}{\sqrt{3}}$ 52% 49% | | A. C. IZ. The A. C. A. C. A. C. 4. The respe A. C. 5. If a struct A. C. C. | elength (in Å) of 1 100 number of basic crystal system is 4 6 er indices (hki) represents a set of parallel planes a set of arbitrary plane Miller indices of a plane having ectively are 101 0 and r be respectively the lattice coure, then $r = \frac{\sqrt{3}}{4}a$ $r = a$ omic packing factor for FCC structu 74% | B. D. B. D. Intercepts B. D. onstant and B. D. | 10 1000 5 7 a particular plane none of these 2, ∞ , ∞ units on a,b,c axes 001 020 d radius of an atom in a BCC $r = \frac{\sqrt{2}}{4} \frac{a}{a}$ $r = \frac{a}{\sqrt{3}}$ | | Ca l | FCC | В. | BCC | |--|---|-----------------------
--| | SO. Product | ion of continuous x-rays is ten | C. | none of these | | A. (| Compton effect | med as | | | _ C. | Dispers 1 | В, | Scattering | | 51. The amn | nverse photoelectric effect | . D. | Photoelectric effect | | relation | article of electric and magnet | tic fields ar | Photoelectric effect
re related to each other by the | | A. / | 2.0 | | | | | $_{0}B_{0}=c$ | В. | $B_0 = E_0 c$ | | | $E_0 = B_0 c$ | | $B_0 = E_0 c$ $E_0 B_0 = c^2$ | | A | & Germer experiments relate | es to | in the state of th | | | nerierence | В. | polarization | | C. e | lectron-diffraction | D. | phosphorine | | 53. Matter w | aves | 72 0 1 | prosprioring | | | re longitudinal | В. | are electromagnetic | | C. a | lways travel with c | D | charie diffraction | | 54. The phase | e velocity (vn) and the group | velocity /a | (g) of a de Broglie wave in free | | space (spe | ed of light = c) are related as | velocity (| g) of a de Brogile wave in free | | | $v_p = \sqrt{2}v_q$ | В, | 1 | | THE RESERVE OF THE PARTY | | | $v_p v_g = c^2$ $v_p v_g = c^{1/2}$ | | | $v_g = c$ | D. | $v_p v_g = c^{1/2}$ | | 55. The wave | iunction of certain particle is | $s \psi(x) = A$ | $\cos^2 x$ for $-\frac{\pi}{2}$ to $\frac{\pi}{2}$; then the | | value of A | 15 | | | | A. | 8 | В. | 3 | | | 3π | | $\sqrt{\frac{8\pi}{8\pi}}$ | | 1 | | | 100 | | C. | 1 | D. | 3 | | | 2π | | $\sqrt{\frac{3}{2\pi}}$ | | Y | Name of the Owner | | | | 6. The state | of a free particle is repre | sented by | a wave function $\psi(x,0) =$ | | Ne 202+1kg | the value of N is | | | | Δ | t; the value of N is . | В. | 1 1 | | ~ | | D. | -1/2-1/4 | | | $\sqrt{a\pi}$ | 0 | $\frac{\pi^{1/2}a^{1/4}}{1}$ | | C. | 14 15 | D. | | | 7 1111 1 1 1 1 | $\pi^{1/4}a^{1/2}$ | | _ πα | | | e following operator is Hermi | and the second second | | | A. $i\frac{d}{dx}$ | | В. | (d)2 | | d | r | | $\left(\frac{d}{dx}\right)^2$ | | C. /d | 3 | D. | d | | 1 | | | | | | | | dx | 48. Miller indices of a plane having intercepts of 8a, 4b, and 2c on a, b, c axes D. (004) (101) (142) NaCl crystal is 49, M25 M.Sc Physics Ç, C. $\left(\frac{d}{dx}\right)^3$ 58. The value of $[L_z, L^2]$ is iħ $L_x + iL_y$ SET A B. D. 1 0 | A | 4 | atom is | V(r)=0 | |--|--|--|---| | | $V(r) = -\frac{A}{r^2}$ | 5. | | | C | $V(\tau) = Ae^{-r/a_0}$ | D. | $V(r) = -\frac{A}{r}$ | | 60. E | lectrons have half integral spin | and obey | | | A | B-E Statistics | В. | M-B Statistics | | C | F-D Statistics | D. | both B-E & F-D Statistics | | 61. T | he change in the internal energy | y of the gas is d | irectly proportional to | | A | change in volume | В. | change in pressure | | C | change in temperature | D. | none of these | | 2. If | the degree of freedom of a gas | Is n, then C./C | , is | | A. | 2n | В. | | | | $\sqrt{n+1}$ | 100 | $1+\frac{2}{n}$ | | C. | The state of s | - | | | - | 1+1 / | D. | $1+\frac{1}{2n}$ | | | n | Section 4. | 2n | | 3. Ac | cording to quantum mechanics | , for a free part | itle V=0 | | A. | energy levels are discr | ete B. | energy levels are discret | | | and equispaced . | | and not equispaced | | C. | energy is zero | . D. | Energy levels are continuum | | I. In | electromagnetic field which o | ne of the foll | owing remains invariant unde | | | Buche Held Alliell | | | | Lore | entz transformation | me or the roll | owing remains invariant unde | | Lore
A. | entz transformation | | | | Lore | entz transformation $ \vec{E} \times \vec{B} $ $ E^{2} $ | 8. | $E^2 - c^2 B^2$ | | A. C. | entz transformation $\vec{E} \times \vec{B}$ E^2 | B. D | | | C. | entz transformation $\vec{E} \times \vec{B}$ E^2 is position vector, then curl \vec{r} is | 8.
D | $
\begin{array}{c c} E^2 - c^2 B^2 \\ B^2 \end{array} $ | | A. C. | entz transformation $\vec{E} \times \vec{B}$ E^2 | B. D | $ \begin{array}{c c} E^2 - c^2 B^2 \\ B^2 \end{array} $ | | C. If \vec{r} A. C. | entz transformation $ \vec{E} \times \vec{B} $ $ E^{2} $ is position vector, then curl \vec{r} is $ 1 $ 0 | 8.
D | $ \begin{array}{c c} E^2 - c^2 B^2 \\ B^2 \end{array} $ | | Lore A. C. If \vec{r} A. C. | entz transformation $ \vec{E} \times \vec{B} $ $ \vec{E}^{2} $ is position vector, then curl \vec{r} is $ 1 $ 0 | B. D S B. D. | $ \begin{array}{c c} E^2 - c^2 B^2 \\ B^2 \end{array} $ $ 3 \\ \vec{r}/r $ | | Lore A. C. If \vec{r} A. C. ∇ | entz transformation $ \vec{E} \times \vec{B} $ $ \vec{E}^{2} $ is position vector, then curl \vec{r} is $ 1 $ $ 0 $ $ \vec{r}^{2} $ is equal to $ r^{2}$ | B. D S B. D. B. | $ \begin{array}{c c} E^2 - c^2 B^2 \\ B^2 \\ \hline & \vec{r}/r \\ \hline & r^3 \\ \end{array} $ | | Lore A. C. If r A. C. A. C. | entz transformation $ \begin{array}{c c} \vec{E} \times \vec{B} \\ E^2 \\ \vec{r} \text{ is position vector, then curl } \vec{r} \text{ is} \\ 0 \\ \vec{r} \\ \vec{r}^3 \text{) is equal to} \\ \hline r^2 \\ r^{1/3} \\ \end{array} $ | B. D. B. D. B. D. | $ \begin{array}{c c} E^2 - c^2 B^2 \\ B^2 \\ \hline & \vec{r}/r \\ \hline & r^3 \\ \hline & 0 \end{array} $ | | Lore A. C. If r A. C. A. C. | entz transformation $ \vec{E} \times \vec{B} $ $ \vec{E}^{2} $ is position vector, then curl \vec{r} is $ 1 $ $ 0 $ $ \vec{r}^{2} $ is equal to $ r^{2}$ | B. D. B. D. B. D. speed of molecome | $ \begin{array}{c c} E^2 - c^2 B^2 \\ B^2 \\ \hline & \vec{r}/r \\ \hline & r^3 \\ \hline & 0 \end{array} $ | | Lore A. C. If r A. C. A. C. | entz transformation $ \begin{array}{c c} \vec{E} \times \vec{B} \\ E^2 \\ \vec{r} \text{ is position vector, then curl } \vec{r} \text{ is} \\ 0 \\ \hline \frac{\vec{r}}{r^3} \text{ is equal to} \\ \hline r^2 \\ r^{1/3} \\ \text{gas the expression for average} $ | B. D. B. D. B. D. | $E^{2}-c^{2}B^{2}$ B^{2} \vec{r}/r r^{3} 0 Tule is given by | | Lore A. C. If r A. C. A. C. | entz transformation $ \begin{array}{c c} \vec{E} \times \vec{B} \\ E^2 \\ \vec{r} \text{ is position vector, then curl } \vec{r} \text{ is} \\ \hline 1 \\ 0 \\ \hline r^2 \\ r^{1/3} \\ \text{gas the expression for average} \\ \hline 3kT$ | B. D. B. D. B. D. speed of molecome | $E^{2}-c^{2}B^{2}$ B^{2} \vec{r}/r r^{3} 0 cule is given by $2kT$ | | Lore A. C. If r A. C. A. C. | entz transformation $ \begin{array}{c c} \vec{E} \times \vec{B} \\ E^2 \\ \vec{r} \text{ is position vector, then curl } \vec{r} \text{ is} \\ 0 \\ \hline \frac{\vec{r}}{r^3} \text{ is equal to} \\ \hline r^2 \\ r^{1/3} \\ \text{gas the expression for average} $ | B. D. B. D. B. D. speed of molecome | $E^{2}-c^{2}B^{2}$ B^{2} \vec{r}/r r^{3} 0 Tule is given by | | Lore A. C. If r A. C. V (A. C. In a | entz transformation $ \begin{array}{c c} \vec{E} \times \vec{B} \\ E^{2} \\ \vec{r} \text{ is position vector, then curl } \vec{r} \text{ is} \\ 1 \\ 0 \\ \hline $ | B. D. B. D. speed of molec | $E^{2}-c^{2}B^{2}$ B^{2} \vec{r}/r r^{3} 0 cule is given by $\frac{2kT}{m}$ | | Lore A. C. If r A. C. A. C. | entz transformation $ \begin{array}{c c} \vec{E} \times \vec{B} \\ E^2 \\ \vec{r} \text{ is position vector, then curl } \vec{r} \text{ is} \\ \hline 1 \\ 0 \\ \hline r^2 \\ r^{1/3} \\ \text{gas the expression for average} \\ \hline 3kT$ | B. D. B. D. B. D. speed of molecome | $E^{2}-c^{2}B^{2}$ B^{2} r^{3} 0 Sule is given by $\sqrt{\frac{2kT}{m}}$ | | Lore A. C. If r A. C. V (A. C. In a | entz transformation $ \begin{array}{c c} \vec{E} \times \vec{B} \\ E^{2} \\ \vec{r} \text{ is position vector, then curl } \vec{r} \text{ is} \\ 1 \\ 0 \\ \hline $ | B. D. B. D. speed of molec | $E^{2}-c^{2}B^{2}$ B^{2} \vec{r}/r r^{3} 0 cule is given by $\frac{2kT}{m}$ | | Lore A. C. If T A. C. V (A. C. In a A. | entz transformation $\begin{array}{c c} \vec{E} \times \vec{B} \\ \hline E^2 \\ \hline \text{is position vector, then curl } \vec{r} \text{ is} \\ \hline 1 \\ 0 \\ \hline \\ r^2 \\ \hline r^{1/3} \\ \hline \text{gas the expression for average} \\ \hline \\ \hline \frac{3kT}{m} \\ \hline \\ \hline 8kT \\ \hline \end{array}$ | B. D. B. D. speed of molec | $E^{2}-c^{2}B^{2}$ B^{2} \vec{r}/r r^{3} 0 cule is given by $\sqrt{\frac{2kT}{m}}$ | | Lore A. C. If T A. C. V (A. C. In a A. | entz transformation $\begin{array}{c c} \vec{E} \times \vec{B} \\ \hline E^2 \\ \hline \text{is position vector, then curl } \vec{r} \text{ is} \\ \hline 1 \\ 0 \\ \hline \\ r^2 \\ \hline r^{1/3} \\ \hline \text{gas the expression for average} \\ \hline \\ \hline \\ \hline \\ \frac{3kT}{m} \\ \hline \\ \hline \\ \frac{8kT}{\pi m} \\ \hline \end{array}$ | B. D. B. D. speed of molec | $E^{2} - c^{2}B^{2}$ B^{2} 3 \vec{r}/r r^{3} 0 cule is given by $\frac{2kT}{m}$ $\sqrt{\frac{3kT}{2m}}$ | | Lore A. C. If r A. C. V (A. C. In a A. | entz transformation $\begin{array}{c c} \vec{E} \times \vec{B} \\ \hline E^2 \\ \hline \text{is position vector, then curl } \vec{r} \text{ is} \\ \hline 1 \\ 0 \\ \hline \\ \frac{\vec{r}}{r^2} \\ \text{is equal to} \\ \hline \\ r^2 \\ \hline r^{1/3} \\ \hline \text{gas the expression for average} \\ \hline \\ \hline \\ \hline \\ \frac{3kT}{m} \\ \hline \\ \hline \\ \frac{8kT}{\pi m} \\ \hline \\ \text{fiulds are assumed to have} \\ \end{array}$ | B. D. B. D. Speed of molecular and the control of t | $E^{2}-c^{2}B^{2}$ B^{2} \vec{r}/r r^{3} 0 cule is given by $\sqrt{\frac{2kT}{m}}$ | | Lore A. C. If \vec{r} A. C. In a A. C. At OK A. C. | entz transformation $\begin{array}{c c} \vec{E} \times \vec{B} \\ \hline E^2 \\ \hline \text{is position vector, then curl } \vec{r} \text{ is} \\ \hline 1 \\ 0 \\ \hline r^2 \\ \hline r^{1/3} \\ \hline \text{gas the expression for average} \\ \hline \hline \sqrt{\frac{3kT}{m}} \\ \hline \frac{8kT}{\pi m} \\ \hline \text{fluids are assumed to have} \\ \hline \hline \text{minimum entropy} \\ \hline \end{array}$ | B. D. Speed of molecular B. D. | $E^{2}-c^{2}B^{2}$ B^{2} 3 \vec{r}/r r^{3} 0 Sule is given by $\sqrt{\frac{2kT}{m}}$ $\sqrt{\frac{3kT}{2m}}$ zero entropy | | Lore A. C. If \vec{r} A. C. In a A. C. At OK A. C. | entz transformation $\begin{array}{c c} \vec{E} \times \vec{B} \\ \hline E^2 \\ \hline \text{is position vector, then curl } \vec{r} \text{ is} \\ \hline 1 \\ 0 \\ \hline \\ r^2 \\ \hline \end{array}$ is equal to $\begin{array}{c c} r^2 \\ r^{1/3} \\ \hline \text{gas the expression for average} \\ \hline \hline \sqrt{\frac{3kT}{m}} \\ \hline \\ \hline \text{fluids are assumed to have} \\ \hline \text{minimum entropy} \\ \hline \text{maximum entropy} \\ \hline \end{array}$ | B. D. Speed of molecular B. D. | $E^{2}-c^{2}B^{2}$ B^{2} 3 \vec{r}/r r^{3} 0 Sule is given by $\sqrt{\frac{2kT}{m}}$ $\sqrt{\frac{3kT}{2m}}$ zero entropy | ne soln n a The In | * | classical partition function Z giv | | | |-----------|--
--|--| | 100 | sum of energy of system | 8. | sum of momentum | | C | · Sum of state - 6 | | System | | 1. Ab | sum of states of system etter power supply should posse | D. | none of these | | A | hint supply should posse | 5 | | | C | - "Bildi input impedence | B. | lower input impedence | | | total voltage resolution | D. | lowest output impedence | | 72. Tel | mperature coefficient of carbon r | | - The A doublet improveme | | A. | zero zero | The state of s | | | C | negative | В. | positive | | 73. The | dynamic recistance for our | D. | Both positive & negative | | of 1 | dynamic resistance (in Ohms) of
0 mA at room temperature is | an ideal p-n | Junction with a forward curren | | Α. | 0.5 | | | | C. | 2.0 | . B. | 1.5 | | | the state of s | D. | 2.5 | | A. | en operated in cutoff and saturati | ion, the transi | | | <u>^.</u> | a linear amplifier | В. | a switch | | | a variable resistor | D. | a variable capacitor | | 75. AN | NOSFET differs from JFET mainly be | ecause | | | - A. | of power rating | В. | MOSFET has two gates | | C. | JFET has a pn junction | D. | MOSFET do not have | | | | | physical channel | | 76. The | mobility of an electron in a condu | uctor is expres | ssed in terms of | | A. | $cm^2V^{-1}s^{-1}$ | В. | cm V-1s-1 | | C. | cm ² V ⁻² s ⁻¹ | D. | cm2s-1 | | 77 Inf | rared LED is usually fabricated from | - | | | A. | Ge | В. | Si | | C. | GaAs | D. | GaAsP | | | | | | | 78. Th | e impurity commonly used for | realizing the | base region of a silicon no | | tra | nsistoris | | | | A. | Gallium | В. | phosphorous | | C. | Boron | D. | Indium | | 79. Di | gital circuits can be made by repeti | tive use of the | e following gates | | A. | NOT | В. | NAND | | G. | AND | D. | XOR | | 80 AF | nalf adder is a logic circuit with | 1 | | | A. | 3 inputs & 1 output | 1 0 | | | C. | 2 inputs & 1 output | В. | 3 inputs & 2 output | | 111/4 | | D. | 2 inputs & 2 output | | 81. Da | ta are stored in a random access m | emory (RAM) | during the | | Α. | read operation | В. | enable operation | | C. | write operation | D. | address operation | | 82. AF | ROM is a | 1 2 24 15 | - operation | | A. | volatile memory | D | | | - | non volatile memory | B.
D. | read/write memory
byte organized memery | | C. | I IIVII VOIATIIP Memory | | | | 83. | . The c | elgen values of the matrix 0 | 0 0
1 1 are | | |--------------|--|--|----------------------|--| | | A. | 1,1,2 | 1 11 B. | 0,1,2 | | | c. | 2,2,0 | D. | 2,2,1 | | 84 | The | value of the integral $I = \frac{1}{2\pi i} \oint_{c}$ | dz | | | - | | | | 1 | | - | A. | 0.5
2i | 8.
D. | 0 | | 85. | And the last of th | ording to Curie-Weiss law | U. | | | 05, | A. | C | В. | | | | ^, | $\chi = \frac{1}{\Omega - T}$ | В. | $\chi = \frac{1}{T + \Theta}$ | | | C. | $x = \frac{c}{\Theta - T}$ $x = \frac{c}{T - \Theta}$ | D. | $\chi = \frac{c}{T + \Theta}$ $\chi = \frac{C}{T\Theta}$ | | 86. | Soft | super conductors observe | eli all'indice | THE THE REPORT OF THE PARTY | | | A. | Silsbee's effect | В | Meissner's effect | | | C. | both of these | D | none of these | | 87. | | order of magnitude of binding er | nergy (in MeV | per nucleon in a nucleus is | | | Α. | 1 | В. | . 10 | | | C. | 100 | D. | 3 | | 88. | Thec | onstant $\frac{eh}{2m} = 9.2741 \times 10^{-24}$ | T^{-1} units is to | ermed as | | | Α. | Curie | В | Bohr magneton | | | C. | Rutherford | D. ; | fine constant | | 89. | Accor | ding to Shell model, the ground | state of 150 r | nucleus is | | | | | В. | | | | A. | $\frac{3^+}{2}$ | В. | $\cdot \left \frac{1^+}{2} \right $ | | | | 2 | | and the second s | | | C. | 3 to salpri unio integral | D. | 1-2 | | | | 2 | | 2 | | 90. | The h | alf life of a radioactive sample is | | | | | ^ | $e^{-\lambda/2}$ | В. |
ln2 | | | A. | | | a la | | A CONTRACTOR | | 7.1 | D. | 1 1 | | | C. | $\frac{\ln \lambda}{2}$ | U. | $\frac{\pi}{2}$ | | | | | 1 | | | 91. | 238 U a | and ²³⁴ U are | | Liannara | | E | Α. | isotones | B. | isomers
isobars | | | C. | isotopes | D, | ISUUdis _ | | 92. | One B | equeral is defined as | | | | | Α | 1 disintegration per sec. | В. | 10 disintegration per sec | | | C. | 10 ⁶ disintegration per sec | D. | 3.7 × 10 ⁶ disintegration per sec | | 93. | Which | of the following is a lepton | | | | | A. | photon | В. | π – meson | | 10.3 | C. | μ – meson | D. | proton | | 94. Whi | Which of the following decay is forbidden | | | | | | |----------|--|--------------|---|--|--|--| | A. | $\mu^- \rightarrow e^- + \nu_\mu + \bar{\nu}_e$ | B. | $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ | | | | | C. | $\pi^+ \to e^+ + \nu_e$ | D. | $\pi^+ \to \mu^+ + \nu_{\mu}$ $\mu^- \to e^+ + e^- + e^-$ | | | | | 95. Whi | ch one of the following particles do | es not have | spin 1/2 | | | | | A. | proton | В. | photon | | | | | ·C. | neutron | D. | neutrino | | | | | 96. Hyp | erfine splitting in hydrogen ground s | tate (in eV) | is of the order of | | | | | A. | 10-3 | В. | 10-13 | | | | | C. | 10-5 | D. | 10-15 | | | | | 97. Whi | Which has the smallest levels spacing | | | | | | | Α. | molecular rotational levels | В. | molecular vibrational levels | | | | | C. | molecular electronic levels | D. | none of these | | | | | 98. Rece | ently the gravitational waves were de | tected by | | | | | | Α. | LIGO | В. | VIRGO | | | | | C. | LISA | D. | EGO | | | | | | rticle and antiparticle | 1 | with the into two | | | | | A. | must be different from each | В | always annihilates into two | | | | | - | other must have the same mass | D. | none of these | | | | | L. | must have the same mass cause attributed to neutrino oscillate | ions is due | to the presence of their | | | | | | charge | В. | | | | | | A. | charge | D. | charge and spin | | | | SET A | An example of a non-conservative force is | | |--|---| | (A) Gravitational force | | | (C) Magnetostatic force | (B) Electrostatic force | | | (D) Viscous force | | 2. Isotropy of space gives rise to conservation of | | | (A) Linear momentum | (D) 4 | | (C) Energy | (B) Angular momentum | | (C) bliefgy | (D) Charge | | 3. In a collision of two fundamental particles in a | center of mass frame | | (A) Total energy of both particles is zero | conter of mass realise | | (B) Total linear momentum is zero | | | (C) Total angular momentum is zero | | | | | | (D) Total charge is zero | Salar Company of the | | 4. The negative result of Michelson-Morley exper | iment suggests that | | (A) Space is homogeneous | | | (B) Light travels with a finite speed | | | (C) There is no special reference frame in | the universe | | (D) There is a special reference frame in the | he universe | | | | | 5. In Theory of Special Relativity, if space-time in | nterval ds ² = 0 between two events A & B, then | | (A) Two events are simultaneous | | | (D) Two events happen at the same point | in space | | (C) It will take zero time for signal to trav | el between points A & B | | (D) Points are light like separated | | | | t at a despit has | | 6. If I A current flows through a circuit, then the | number of electrons flowing through the circuit per | | second is | | | (A) 0.625 x 10 ¹⁵ | (B) 1.6 x 10 ¹⁹ | | (C) 1.6 x 10 ⁻¹⁹ | (D) 0.625 x 10 ⁻¹⁹ | | 7. The resistivity of a conductor depends on | | | 1. The resistivity of a conductor | | | (A) Area of the conductor | (B) Length of the conductor | | (C) Type of material | (D) None of these | | | | | 8. Kirchhoff's Current Law works on the principl | e of which of the following | | (A) Law of conservation of charge | | | (B) Law of conservation of energy | | | (C) Both | | | (D) None of the above | | | | | | 9. How much is the base to emitter voltage of a t | ransistor in the ON state | | (A) Zero | (B) 0.7 mV | | (C) 0.7 V | (D) Variable | | 10. α and β are transistor parameters. If $\beta = 100$, | then the approximate value of α is | | (A) 0.00 | (B) 99 | | (A) 0.99
(C) 1.01 | (D) 101 | | (0) 1.01 | | | M25 M.Sc Physics | SET A | | 11. The I's compliment of a binary number is obt | anica of charges | |---|--| | (A) Each III to a 10! | (B) Each '0' to a '1' | | (A) Each 'I' to a '0' | (D) None of the above | | (C) Each 'I' to a '0' and each '0' to a '1' | (D) None of the see. | | 12. A decimal number 6 in excess - 3 code is writ | tten as | | (A) 0110 | (B) 0011 | | (C) 1101 | (D) 1001 | | 13. The output of a 10 input OR gate is high | * The state of | | (A) Only if even number of inputs are hig | th | | (B) Only if odd number of inputs are high | | | (C) If any one input is high | | | (D) If any one input is low | | | 14. The equivalent decimal number of a maximum | m hinam number of length one byte is | | | | | (A) 8 | (B) 64 | | (C) 255 | (D) 256 | | 15. The parity of the binary number 100110011 i | S | | (A) even | (B) odd | | (C) 4 | (D) 5 | | 16. The length of second's pendulum on the surface of n on the surface of earth is | ace of earth is approximately 1 m. The approximate moon, where acceleration due to gravity is (1/6)th of the | | (A) 36 m | (B) 1 m | | (C) 1/36 m | (D) 1/6 m | | 17. The displacement of particle performing simp cos(wt), where distance is in cm and time is | | | (A) 10 cm | (B) 14 cm | | (C) 2 cm | (D) 4 cm | | 18. A simple pendulum is set up in a trolley which horizontal plane. Then the thread of the pendulum vertical where q is given by | th moves to the right with an acceleration "a"
on a dulum in the mean position makes an angle q with the | | (A) tan-1(a/g) in the forward direction | (B) tan-1(a/g) in the backward direction | | (C) tan' (g/a) in the forward direction | (D) tan-1(g/a) in the backward direction | | 19. A particle executes Simple Harmonic Motion position its kinetic energy is equal to its pote | (SHM) of amplitude "A". At what distance from mean antial energy | | (A) 0.51 A | (B) 0.61 A | | (C) 0.71 A | (D) 0.81 A | | M25 M.Sc Physics | SET A 20 | | MZ) W.SCI IIJS | | | (A) Zero (C) 3 s 21. The zeroth law of thermodynamics allows (A) work (C) temperature | (B) √3 s (D) Infinite us to define (B) internal energy (D) entropy | |--|--| | (C) 3 s 21. The zeroth law of thermodynamics allows (A) work (C) temperature | (B) √3 s (D) Infinite us to define (B) internal energy (D) entropy | | 21. The zeroth law of thermodynamics allows (A) work (C) temperature | (D) Infinite us to define (B) internal energy (D) entropy | | (C) temperature 22. A constant-volume gas thermometer in | us to define (B) internal energy (D) entropy | | (C) temperature 22. A constant-volume gas thermometer in | (B) internal energy (D) entropy | | (C) temperature 22. A constant-volume gas thermometer in | (B) internal energy (D) entropy | | 22. A constant-volume cas thermometer | (D) entropy | | 22. A constant-volume gas thermometer is used | d to measure the temperature of an object. When the | | thermometer is in south of the mometer is used | d to measure the temperature of an object. When the | | 8.500 × 10 ⁴ Pa. When it is in contact with the cothe object is | to measure the temperature of an object. When the le point (273.16 K) the pressure in the thermometer is object the pressure is 9.650 × 10 ⁴ Pa. The temperature of | | (A) 37.0 K | COLUMN TO THE PARTY OF PART | | (C) 310 K | (B) 241 K | | (0)5101 | (D) 314 K | | 23. The two metallic strips that constitute a ther | rmostat must differ in | | (A) length | (B) thickness | | (C) mass | (D) coefficient of linear expansion | | | | | The coefficient of expansion of certain steel in (C°)⁻¹, is | is 0.000012 per C°. The coefficient of volume expansion | | (A) (0.000012) ³ | (B) (4π/3)(0.000012) ³ | | (C) 3 × 0.000012 | (D) 0.000012 | | | | | 25. Heat from Sun reaches the Earth by | | | | (B) Conduction | | (A) Radiation | (D) None of the above | | (B) Convection | The second secon | | 26. In electrostatics a field line and an equipoter | ntial surface arc | | (A) Always perpendicular | | | (B) Always parallel | | | (C) Makes any possible angle | | | (D) None of the above | | | | | | 7. If a dielectric is inserted between the plates of | of an air filled capacitor, the capacitance will | | (A) Increase | | | (B) Decrease | | | (C) Remain same (D) May increase or decrease depending | upon type of dielectric | | | | | 8. A capacitor stores .076 Coulombs of charge | at 10 V. It's capacitance is | | 8. A capacitor stores to a constitution of the capacitor stores to a | | | (A) 7.6 F
(C) 0.00076 F | (D) 0.0076 F | | (C) 0.00070. | | | | | | . 6 | | W | |--|-----------------------------------|----------------| | 29. Which of the following electrostatic problems can be s | solved exactly? | | | 25. Which of the following steament | 1 | | | (A) A charge placed above a grounded infinite cor
(B) A charge placed away from a grounded condu
(C) None of (A) & (B) | eting sphere. | | | (D) Both of (A) & (B) | | | | 30. The materials having low retentivity is suitable for m | aking | | | (A) A permanent magnet | | | | (B) A temporary magnet | | | | (C) Weak magnets | - 10 Marine | | | (D) None of the above | | | | 31. Ferrites are which type of materials | | | | | | | | (A) Paramagnetic | (B) Diamagnetic | | | (C) Ferromagnetic | (D) None of the above | | | 32. What is the reluctance of air gap as compared to san | | | | | | | | (A) Reluctance of air gap is much lower as com | pared to iron | | | (D) Reductance of air gap is much higher as com | apared to iron | | | (C) Rejudiance of air gap is slightly lower as co | mnared to iron | | | (D) Reluctance of air gap is slightly higher as co | ompared to iron | | | 33. The Biot-Savart's law is a general modification of | | | | (A) Kirchhoff's law | | | | (B) Lenz's law | | | | (C) Ampere's law | | | | (D) Faraday's law | | | | (D) I maday 3 law | | | | 34. A rectangular magnet of magnetic moment M is commoment of each piece will be | at into two pieces of same length | , the magnetic | | (A) M | | | | (C) 2M | (B) M/2 | | | (C) 2M | (D) M/4 | | | 35. Energy stored in an inductor of inductance L carry | ving a current I is | | | (A) ½L1² | m 2. | | | (A) 71L1 | (B) 1/2 L ² I | | | (C) ½L²l² · | (D) 1/LI | | | 36. In an electromagnetic wave in free space | The second second | | | (A) F and P fields are in the second | | | | (A) E and B fields are in phase and perpendict | ular | | | (B) E and B fields are out of phase by 90° and | perpendicular | | | (C) E and B fields are in phase and parallel | | | | (D) E and B fields are out of phase by 90° and | parallel' | | | | | | M25 M.Sc Physics SET A 2017 (D) 101 37. Divergence of magnetic field is zero. This statement implies - (A) Absence of magnetic monopole - (B) Absence of magnetic quadrupole - (C) Presence of magnetic monopole - (D) Presence of magnetic quadrupole 38. In a system of charged particles in an EM field, which of the following statement is correct? - (A) Total linear momentum of all the charged particles is conserved - (B) Total energy of all the charged particles is conserved - (C) Both A & B - (D) None of A & B 39. Electromagnetic waves are transverse in nature because these waves can be - (A) Reflected - (B) Refracted - (C) Diffracted - (D) Polarized 40. Poynting vector gives - (A) Energy density in a
given EM field - (B) Energy flux density in a given EM field - (C) Momentum density in a given EM field - (D) Momentum flux density in a given EM field ... 41. A square matrix through similarity transformation can always be - (A) Diagonalized - (B) Triagonalized - (C) Made an identity matrix - (D) Made a null matrix 42. According to determinant properties, X times multiple of one row is added to another row, then determinant - (A) Remains same - (B) Becomes X times of original determinant - (C) Becomes X/2 times of original determinant - (D) Becomes 2X times of original determinant 43. Necessary and sufficient condition for M(x,y)dx + N(x,y)dy to be total differential is - $(A) \frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$ - $(B)\frac{\partial M}{\partial v} = \frac{\partial N}{\partial x}$ - $(C)\frac{\partial M}{\partial r}\frac{\partial N}{\partial r}=1$ - $(D)\frac{\partial M}{\partial x}\frac{\partial N}{\partial x} = 1$ M25 M.Sc Physics- | 44. Integrating | factor | of eq | uation | xdy-ydx | =·0 is | |-----------------|--------|--------|--------|---------|--------| | - THICEIRUIK | Ideler | or od. | | | | - (A) 1/y2- - (B) 1/(xy) - (C) $1/(x^2+y^2)$ - (D) All of above #### 45. Cross product of two vectors is - (A) Commutative - (B) Associative - (C) Both A & B - (D) None of A & B ### 46. f(z) is a function of a complex variable z. f(z) is said to be analytic in a domain D if - (A) f(z) is defined at all points of D - (B) f(z) is defined and continuous at all points of D - (C) f(z) is defined and differentiable at all points of D - (D) None of the above ## 47. Value of $\exp(i3\pi/4)$ where $i = \sqrt{-1}$, is - (A) $(-1/\sqrt{2})+(1/\sqrt{2})i$ - (B) (1/\d2)+(1/\d2)i - (C) (1/\(\frac{1}{\sqrt{2}}\)i - (D) (-1/\(\frac{1}{\sqrt{2}}\)i #### 48. Complex function which is infinite valued is - (A) sin(z) - $(B)\cos(z)$ - (C) exp(z) - $(D) \log(z)$ #### 49. A mapping w = f(z) is conformal at every point where - (A) f(z) is defined - (B) f(z) is continuous - (C) f(z) is analytic - (D) f(z) is analytic, except at points where derivative f'(z) is zero # 50. If f(z) is analytic in a simply connected bounded domain D, then the integral of f(z) over a simple elosed path in D is - (A) Zero - (B) πi - (C) 2ni - (D) 4ni M25 M.Sc Physics SETA | , | | |--|------------------------| | 51. An example of a coherent source is | | | 51. An example of a constraint state is | | | (B) Two LEDs of different power | | | (C) One bulb and one LED of same power | | | | | | (D) Light coming from a bulb by two different paths | | | 52. A thin film of oil on water looks coloured due to | | | (A) Diffraction of light | | | (B) Interference of light | | | (C) Scattering of light | | | (D) Refraction of light | | | 53. In a Nicole prism made from Calcite crystal, if No, NE and NB are refractive i | ndices of ordinary ray | | 53. In a Nicole prism made from Calcille crystal, it 140,142 and 18 | | | extraordinary ray and Canada balsam, respectively, then | | | The same of sa | | | $(A) N_0 > N_B > N_E$ | | | (B) $N_0 < N_B < N_E$ | | | (C) $N_0 < N_B > N_E$ | | | (D) $N_0 > N_B < N_E$ | | | | | | 54. An optic axis can be found in which type of crystal | | | (A) Simple cubic | | | (B) Face centered cubic | | | (C) Triclinic | | | (D) Body centered cubic | | | | | | 55. Blue colour of sky is due to | | | | | | (A) Diffraction of light | | | (B) Scattering of light | | | (C) Interference of light | | | (D) Refraction of light | | | 56. A circularly polarized light can be resolved into | | | 56. A circularly p | | | (A) Two linearly polarized light beams of equal intensity in phase | | | (B) Two linearly polarized light beams a facult intensity out of phase by | 90° | | (B) Two linearly polarized light beams of unequal intensity out of phase by (C) Two linearly polarized light beams of unequal intensity out of phase | by 90° | | (D) Two linearly polarized light occurs | | | Voung's double slit experiment, then on the | sereen | | 57. If a white light source is used in Young's double slit experiment, then on the | by the characters of | | at the center followed by few coloured fringe | s on either side | | (A) A narrow white Iringe at the center, to how be specified at the center (B) Black and white alternating fringes with white fringe at the center | | | | | | (C) Black and white atternating tringes with dark side of central fringe (D) A large number of coloured fringes on either side of central fringe | | | | | | 58. Constructive interference happens when two waves are | | | (A) out of phase | | | (B) zero amplitude | | | (C) in phase | | | (D) in front | | | | | M25 M.Sc Physics SET A | 59. Certain light of wavelength 600 nm in vacuum enters glass having refractive in | dex of 1.5. What will | |--|-----------------------| | 50. Code: Links of wavelength 600 nm in vacuum enters glass having remactive in | | | be weed at a Clickt incide class? | | | be wavelength of light inside glass? | | | (A) 900 nm | | | | | | (B) 600 nm | | | (C) 400 nm | | | (D) 300 nm | | | 60. A 2 level laser | | | oo. A 2 level laser | | | (A) is most office at | | | (A) is most efficient laser | | | (B) is very difficult to operate | | | (C) Does not work | | | (D) Has very low power | (III) | | 61 1- 0-1 1 | | | 61. In Schrödinger wave equation the symbol ψ represents the | | | | | | (A) wavelength of the spherical wave | | | (B) phase of the spherical wave | | | (C) frequency of the spherical wave | | | (D) none of these | | | 60 Yearly and a 1911 of the second se | : | | 62. In the probabilistic interpretation of wave function the quantity ψ is | | | (A) a probability desire | | | (A) a probability density | | | (B) a probability amplitude | , | | (C) a probability wavelength (D) a probability frequency | | | (D) a probability frequency | , | | 63. In quantum mechanics the expectation value of an operator O representing a d |
unamical variable is | | os. In quantum medianes the expectation value of an operator o representing a d | ynamical variable is | | (A) smallest of the eigenvalues of O | | | (B) largest of the eigenvalues of O | | | (C) mean value of all the eigenvalues | | | (D) mean value of the eigenvalues weighted by probability density | | | | | | 64. The energy spectrum of a particle bound in a simple harmonic potential is | | | The first of the first of the primary in horself and for the start from the more tage to start a | Presinger (1) | | (A) completely continuous | | | (B) both continuous and discrete | | | (C) completely discrete having equidistant levels | | | (D) completely discrete having non-equidistant levels | | | | HARTING A SECTION | | 65. Ehrenfest theorem partially shows the connection between quantum mechanic | es and | | | | | (A) photonies | | | (B) electronics | | | (C) special relativity | | | (D) classical mechanics | | | | | | | | | | | | | | | (0) | bound
unbound | | | | |-------------|--|-----------------------|--|--| | (C) | both bound and | unbound | | | | (D) | neither bound no | or unbound | | | | | | .l. describes the hel | avious of | | | | | ıly describes the bel | aviour or | | | (A) | | aloms | | | | (B) | | ms and molecules | | | | (C) | | ills and molecules | | | | (D) | all particles | | | | | O To much | tum machanical | unnelling, if the bar | rier width is increased, tunnel | ling probability win | | (A) | increase sligh | itly | word of Specifical bottom and | | | (A) | | nentially | | | | (C) | | ntly | | | | (D) | | onentially | | | | (20) | | 968 (C) (C) | S-notion of a single particl | e | | 9. Which | one of the follow | ing in an allowed wa | we function of a single particl | to us to be award out F. All. | | (A) | X | notes learning to | The state of s | | | (B) | sin(x) | | | | | (C) | | | a realizable | | | (D) | 1/x | | | | | | ·I to | ACCRET AND | | | | 70. [Px,Py] | is equal to | - Table 1 - 13 | | | | (A)
(B) | | | The second of the second | | | (C) | | | | T025 0 (A) | | (D) | | | | TOTAL STATE OF THE | | | | acional lattices are | | | | 71. The ni | imber of two oime | ensional lattices are | (B) 5 | | | (A) | 3 | | (D) 9 | | | (C) | | | | -ta subjectivetal system | | 70 The m | mber of crystallo | graphically equivale | nt planes in the {110} family (B) 6 | of a cubic crystal system | | (A) | 4 | | (B) 6
(D) 12 | | | (C) | | | (D) 12 | | | | | 1: tamis molecule | n terms of interatomic distan | ce R is given by | | | | | | | | | hara A R mands | are constants for th | e given molecule. The equili | brium separation Re is | | | nere A, B, m and a | | lander Penerga and an energy admin | Canada to the state of the | | | | | | | | (A) | (nA/n ₁ B) ^{1/n-m}
(nB/mA) ^{1/m-n} | or marketing in | - (B) (nA/mB) ^{1/m-n}
(D) (nB/mA) ^{1/n-m} | NEEDS WELL | | (C) | (nB/mA)1/m·n | | (D) (nB/mA) ^{1/n-m} | | | | | | (_) in an ionia!!d | in temperatura T is given | | | ncentration of Seh | oliky imperfections | 'n' in an ionic solid at a certa | ain temperature 1 is given | | by | | | | | | (4) | N exp(-Ep/kT) | | (B) Neva(E /LT) | | | | N exp($-E_p/kT$) | | (B) N $\exp(E_p/kT)$
(D) N $\exp(E_p/2kT)$ | | | (0) | onp(christ) | | (D) IT EXPLED ZKI | | | | | | | | | M25 M.Sc | | | | 20 | | 75. The natural cut off frequency ω _m for a one mass M is given by | dimensional periodic lattice with force constant K and | |---|---| | (A) (4K/M)
(C) (4K/M) ^{1/2} | (B) (4M/K)
(D) (4M/K) ^{1/2} | | 76. A crystal is subjected to a monochromatic angle of 15°. If the same X-ray beam is us diffraction | X-ray beam; the first order diffraction is obtained at an sed, what is the angle corresponding to the third order | | (A) 15°
(C) 51° | (B) 31°
(D) 61° | | 0.75 Å is | to move in a one dimensional potential well of length | | (A) 150.7eV
(C) 350.7eV | (B) 250.7eV
(D) 450.7eV | | 78. The potential of an electron in a one dimer Kronig-Penney model. If V ₀ αb<< h ² /4π ² r | nsional arrangement of atoms is identical to that used in the m, the energy band gap at $k=\pi/\alpha$ is | | (A) 2V ₀ b/α | | | (C) V ₀ b/2α | (B) 2V ₀ α/b
(D) V ₀ α/2b | | 79. The susceptibility of a piece of ferric oxide of 106 A/m, the flux density in the material | e is 1.5×10 ⁻³ . If the material is subjected to a magnetic field | | (A) 0.259T | (D) 1 2 2 2 2 | | (C) 2.259T | (B) 1.259T
(D) 3.259T | | 80. The number of slip systems in an fcc eryst | al is | | (A) 4 | (B)8 | | (C)12 | (D) 16 | | 81. Reciprocal lattice of fcc lattice is | | | (A) fcc
(C) sc | (B) bcc
(D) hexagonal | | 82. L point in the first Brillouin Zone of an fee | e lattice has coordinates | | (A) $2\pi/a(1,1,1)$ | (B) 2=/c/100) | | (C) $2\pi/\eta(1/2,0,0)$ | (B) $2\pi/o(1,0,0)$
(D) $2\pi/a(\frac{1}{2},\frac{1}{2},\frac{1}{2})$ | | 83. In an intrinsic semiconductor, the Fermi le | vel lies | | (A) at exactly center of band gap (B) approximately near center of band (C) inside valence band (D) inside conduction band | gap | | M25 M.Sc Physics | SET A 2017 | | | | | semiconductor, | Fermi | level nes | |-----|----|--------------|----------------|-------|-----------| | 0.4 | In | a degenerate | semicolidación | | | - (A) at exactly center of band gap - (B) approximately near center of band gap - (C) inside valence or conduction band (D) 5kT away from valence or conduction band inside the band gap - 85. In case of thermal equilibrium in a semiconductor, if n, p, Nc, Nv and n be densities of electrons, holes, effective density of states in conduction band, effective density of states in
valence band and intrinsic carriers respectively, then - (A) $np = n_i^2$ (C) $np = NcNv n_i^2$ - (B) np = NcNv(D) $np = n_i^2 NcNv$ 86. According to Einstein's model, at very low temperatures specific heat of solids varies with temperature T as (a is a positive eonstant) - (A) T (C) T³ - (B) T² (D) exp(-a/T) 87. Most probable speed in Maxwell-Boltzmann distribution of molecular velocities is (A) $\sqrt{(2kT/m)}$ (B) $\sqrt{(3kT/m)}$ (C) √(8kT/\(\pi\mm\)) (D) $\sqrt{(5kT/2m)}$ 88. Specific licat at constant volume Cv of hydrogen gas at room temperature is (R is gas constant) (A) 3R/2 (B) 5R/2 (C) 7R/2 (D) 9R/2 89. In micro canonical ensemble - (A) energy is fixed - (C) both A & B - (B) no. of particles is fixed - (D) none of A & B 90. In Bose-Einstein condensation, transition temperature Tc is given by - (A) $[h^2/(2\pi mk)][N/(2.612V)]^{1/2}$ - (B) $[h^2/(2\pi mk)][N/(2.612V)]^{-1/4}$ (D) $[h^2/(2\pi mk)][N/(2.612V)]^{-1/4}$ - (C) $[h^2/(2\pi mk)][N/(2.612V)]^{1/2}$ 91. In spectroscopic notation, a single electron in an atom having angular momentum state 1=3 is represented by (A) s (C) d (D) f 92. Vibrational and rotational motions of a molecule are independent of each other. This principle is known as - (A) Born-Oppenheimer approximation (C) Stoke's law (D) Larmor precession (B) Raman effect M25 M.Sc Physics SET A | (A) 2N 2 | (B) 3N-4 | |---|---| | (A) 3N ~ 3 | | | (C) 3N - 5 | (D) 3N – 6 | | 24. In order to be Raman active a molecular rotat | tion or vibration must cause some change in | | (A) electric dipole moment | (B) magnetic dipole moment | | (C) electric quadrupole moment | (D) molecular polarizability | | 5. Selection rule for Raman spectroscopy is | | | $(A) \Delta J = 0$ | (B) $\Delta J = \pm 2$ | | (C) $\Delta J = 0$ or ± 2 | $(D) \Delta J = \pm 1$ | | | | | If a mu-meson is captured by a proton in 1s of
to hydrogen atom will be about | rbital, the radius of the mu-mesonic atom as compare | | (A) 200 times | (D) 2002 dimen | | (C) 1/200 times | (B) 200 ² times
(D) 1/200 ² times | | | | | 7. Nuclear shape can be determined from a measure | surement of | | (A) nuclear electric dipole moment
(C) nuclear magnetic dipole moment | (B) nuclear electric quadrupole moment (D) nuclear magnetic quadrupole moment | | 3. Ground state of deuteron is in which angular r | nomentum state | | (A) 1=0 | (B) combination of I=0 and I=1 | | (C) 1=2 | (D) combination of 1=0 and 1=1 | | | | | Ground state of deuteron is in which spin state | | | (A) S = 0 | (B) $S = V_2$ | | (C) S = 1 | (D) S = 2 | | Which of the following particles is responsible in the dccay of neutron | le for carrying away the missing energy and moment | | (A) alpha particle | (B) neutrino | | (C) lepton | (D) proton | | (C) lepton | | | (C) reprofi | (S) proton |