Jan 2 2018

ENTRANCE EXAMINATION-2018

M.Sc (PHYSICS)

ROLL NO. M 2 5 4 0 0 3 1

Signature of Invigilator

Time: 1 Hour 45 Minutes

Total Marks: 100

Instructions to Candidates

- 1. Do not write your name or put any other mark of identification anywhere in the OMR Response Sheet. IF ANY MARK OF IDENTIFICATIONS IS DISCOVERED ANYWHERE IN OMR RESPONSE SHEET, the OMR sheet will be cancelled, and will not be evaluated.
- 2. This Question Booklet contains the cover page and a total of 100 Multiple Choice Questions of 1mark each.
- 3. Space for rough work has been provided at the beginning and end. Available space on each page may also be used for rough work.
- 4. There is negative marking in Multiple Choice Questions. For each wrong answer, 0.25 marks will be deducted.
- 5. USE OF CALCULATOR IS NOT PERMITTED.
- 6. USE/POSSESSION OF ELECTRONIC GADGETS LIKE MOBILE PHONE, iPhone, iPad, pager ETC. is strictly **PROHIBITED**.
- 7. Candidate should check the serial order of questions at the beginning of the test. If any question is found missing in the serial order, it should be immediately brought to the notice of the Invigilator. No pages should be torn out from this question booklet.
- **8.** Answers must be marked in the OMR response sheet which is provided separately. OMR Response sheet must be handed over to the invigilator before you leave the seat.
- 9. The OMR response sheet should not be folded or wrinkled. The folded or wrinkled OMR/response Sheet will not be evaluated.
- 10. Write your Roll Number in the appropriate space (above) and on the OMR Response Sheet. Any other details, if asked for, should be written only in the space provided.
- 11. There are four options to each question marked A, B, C and D. Select one of the most appropriate option and fill up the corresponding oval/circle in the OMR Response Sheet provided to you. The correct procedure for filling up the OMR Response Sheet is mentioned below.
- 12. Use Black or Blue Ball Pen only for filling the ovals/circles in OMR Response Sheet. Darken the selected oval/circle completely. If the correct answer is 'B', the corresponding oval/circle should be completely filled and darkened as shown) below

A.	ror analyticity of function of a complex v	/ariable, C	auchy Riemann cond	itions are	
	(A) Necessary but not sufficient	Salve	my reg.		
	(B) Sufficient but not necessary	3003	7 50		
	(C) Necessary as well as sufficient				
	(D) Neither necessary nor sufficient				
1					
/2.	A Carnot engine operates with an efficie	ncy of 25	ercent. The source t	emperature is no	ow increased by 20
	percent. To achieve an efficiency of 30 p	ercent, th	e sink temperature s	hould be	, ,
	(A) Kept same				4'1
	(B) Decreased by 6 percent		N= 1- = =	= 100 ·	43 7000
V	(C) Increased by 12 percent		1, 1,2		4 4
	(D) Halved		η= 1- Της 30 30	三一五.	40x2000
- /				320	$\frac{400000}{20000} = 80000$ $= 80000$ $= 1-300 \times 300$ $= 1-300$
\3%	Let A and B be Boolean variables. The va	lue of (A+	1)(B+1) is	A: 37	= 1-30 12 = 129 120 , 300
	(A) Always A			1, 5	في المرابع
	(B) Always B	,	95 - 300	L 200	-1 - 200 Sul
	(C) Zero	1	25 = 1 - 300 400 402=1	2 2	282 293
	(D) 1	4	= A-3=1		3200
. 4/.	Let A and B be Boolean variables. De Ma-		, 'Y (g	= 1. In.
	Let A and B be Boolean variables. De Mo (A) Only when $A = 1$			- P	30 30
	(B) Only when A = B		400X20	(60) t	1 -300 13
	(C) Always		ATI- 100	2 menula	200 7200 (3000)
	(D) Only when A is not equal to B	30	330	300X0	2.24
		70	320.	_	300 T
,5/	For Boolean variables, A and B; A is know	vn to be di	fferent from B. Which	1 Statement is inc	orrect ()
	(A) $A + B = 1$			0.0	32×39032×+
	(B) $AB = 0$		C	71 -1- 30	70 700 224
	(C) A B = B A		η=1-@		= 30×33032X+ = 224 300X6
	(D) A B= 1				300XE
u 6.	Schrodinger equation is				69
♯ 6.	(A) Linear for all potentials				
	(B) Linear only if V = zero				260 , T.
	(C) Linear only for Coulomb potential				100 = 1 - T1 100 = 1 - T1
	(D) Non linear				70 970
					T1 = 1-30 = 30
4.	An electron is confined in a one dimension. The length of the box is about	onal box. G	iround state energy a	ccording to guara	tum those is a second
	The length of the box is about				tuili theory is 1 e V.
	(A) 0.3 nm		E= W/2/2/21	1 = rev	- 044
	(B) 0.6 nm		12416		299
	(C) 0.9 nm				YROXY
	(D) 1.2 nm				20091
1 -	In the angular to the	_			226
# 8.	In the ground state, the average value of	f moment	ım of a particle, conf	ined in a box (of l	ength I) is
	(A) Equal to n / I				300X6
	(B) 2 h / l				12×30 10
	(C) Equal to h / (2 I)				3,
1.40	(D) Zero				
M2	25 M.Sc Physics	S	ET C		200

9. Given that; at X = 1, Y = 0, solve the differential equation; X dY/dX = 1.

- (A) $X = \exp(Y)$
- (B) $X = \exp(-Y)$
- (C) $Y = \exp(X)$
- (D) None of the above 🗸

x dy = 1. logn = 1.

X dy = 1 dy = dy

And y - logn

Thought

The lectron = 1.

. Ratio of electrostatic to gravitational force between an electron and a proton, 1 nm apart, is denoted by a. Then log a (to base 10), is about shood he fine of

- (A) 37
- (B) 39 √
- (C) 42
- (D) 45
- 11. Speed of red light and blue light are same
 - (A) In glass but not in vacuum
 - (B) Neither in glass nor in vacuum
 - (C) Both in glass and vacuum
 - (D) In vacuum but not in glass <
 - 12. A glass prism is dipped in water. Its dispersive power would
 - (A) Remain same
 - (B) Increase
 - (C) Decrease
 - (D) May increase or decrease, depending on angle of prism
- 13. Focal length of a normal eye is about
 - (A) 1 nm
 - (B) 10 nm
 - (C) 100 nm
 - (D) None of the above
- 14. To increase the angular magnification of a simple microscope, one should increase
 - (A) Focal length of the lens
 - (B) Power of the lens
 - (C) Aperture of the lens
 - (D) Object size
- A point object is placed at a distance of 40 cm , from a convex mirror of focal length 40 cm. The image will be
 - (A) Infinity
 - (B) Pole
 - (C) Focus
 - (D) 20 cm behind the mirror

216. Rays of different colour, after going through a convex lens, do not exactly converge at a single point. This

- (A) Spherical aberration V
- (B) Chromatic aberration
- (C) Coma
- (D) None of the above

M25 M.Sc Physics

5 127. Equation of a light wave (in vacuum), is written as $y = A \sin(kx - wt)$. Here, y stands for (A) Displacement of ether particles -(B) Pressure in the medium (C) Density in the medium (D) Electric field , 18. Inverse square law for intensity of light is valid for (A) Point source only (B) Line source only (C) Plane source only (D) All sources ✓19. Young double slit arrangement is immersed in water. (A) Fringe width will remain same (B) Fringe width will decrease (C) Fringe width will increase > (D) There will be no fringes The frequency of source of light in Young double slit arrangement, is increased, without changing its intensity. (A) Fringes will become less bright (B) Fringes will become brighter √C) Consecutive fringes will come closer (D) Central bright fringe will become dim

The wavelength span of visible light, in air is an interval of 300 nm (i.e. 400 nm to 700 nm). In glass, the corresponding interval will be

(A) 200 nm

(B) 250 nm

(C) 270 nm

(D) 280 nm

- 22. Find the minimum thickness of a film (held in air), which will strongly reflect, light of wavelength 589 nm. The refractive index of the film is 1.25.
 - (A) 114 nm
 - (B) 118 nm
 - (C) 123 nm
 - (D) 130 nm
- 23. Phenomenon of beats may take place for
 - (A) Longitudinal waves only
 - (B) Transverse waves only
 - (C) Either type of waves
 - (D) Only ultra sonic waves

ource and a listener move away from each other; each with a speed of 10 m / s, with respect to the A sound source and a listener move away from each other, seed to the ground. The listener detects a frequency of 1950 Hz. Speed of sound is 340 m /s. The original frequency of ground. The listener detects a frequency of (31. An eigen function of operator (x A), where A is d/dx; is (A) Sin x (B) Cos x the source is (C) Expx (A) 2070 Hz (B) 2090 Hz (C) 2110 Hz 32. Tangent galvanometer is governed by the equation; I = K tan a. In a particular measurement, it is found that a (D) 2130 Hz = 46 degree, with a possible error of 0.5 degree. The corresponding value of I is known to be 1 m A; with a 25. Total energy of a relativistic electron is 2 M e V. Its momentum possible error of 0.1 m A. calculate approximately the expected error in the calculated value of the parameter I = K-lana. (A) 1.7 M e V/c (A) 12 percent (B) 1.9 MeV/c (B) 10 percent (C) 1.5 MeV/c (C) 8 percent (D) 1.4 MeV/c 26. A microphone of cross sectional area of 0.8 sq cm is placed in front of a small speaker, emitting 3 watt of (D) 6 percent A microphone of cross sectional area of 30.34 cm. A microphone is 2 meter, calculate the energy sound output. If the distance between the speaker and the microphone is 2 meter, calculate the energy 33. A ball of wood is pushed down, in a bucket of water and then released. It will move up with falling on the microphone, in 5 sec. (A) Uniform acceleration 6 (B) Acceleration of decreasing magnitude (A) 200 erg (C) Acceleration of increasing magnitude (B) 210 erg (D) Uniform velocity (C) 240 erg (D) 255 erg €44. In air, a solid spherical ball falls to the ground, with a terminal velocity of 20 m / s. If allowed to fall in vacuum, 27. Sound level at a location is increased by 30 d B. By what factor, is the pressure amplitude increased? (A) Terminal velocity will be 20 m / s (B) Terminal velocity will be less than 20 m / s (A) 30 (C) Terminal velocity will be greater than 20 m / s. (B) 300 (D) The ball will keep accelerating. It will not attain terminal velocity. (C) 600 (D) 1000 35. An air bubble of diameter 2 mm rises steadily, with a uniform velocity of 0.35 cm / s, through a liquid of 28. Two sound waves of equal frequency (of 1 K Hz), start from the same point, initial phases being same. The relative density 1.75. Neglect the downward gravity pull on the bubble. Calculate approximately the velocity waves meet again, one travelling a distance 83 cm longer than the other. Their interference is observed to be of the liquid. (A) 11 poise destructive. Calculate approximately, the velocity of sound. (B) 9 poise (A) 330 m/s (C) 7 poise (B) 315 m/s (D) 6 poise (C) 310 m/s 36. A capillary tube of radius 0.2 mm is dipped vertically in water. Surface tension of water is 0.075 N/m. Find the (D) 305 m/s height to which, water rises in the tube. 29. Excess pressure inside soap bubble A is twice the excess pressure inside another soap bubble B. The ratio of volumes of Bubble A and B is (B) 75 mm (C) 85 mm (D) 90 mm (B) 0.125 (C) 0.1 57. Let p be the momentum operator in quantum theory and let A be its square. Let X be the position operator. (D) 0.05 The commutator of X and A is FX,P2] 30. Rain drops acquire uniform velocity, due to (A) Proportional to A = 224/24 (B) Proportional to X (A) Negligible weight (C) Proportional to p (B) Surface tension (D) Proportional to (pX) (C) Viscosity of air (D) Wind movement SET C M25 M.Sc Physics

M25 M.Sc Physics

Vectors i, j, k are usual unit vectors along coordinate axes. Magnetic field in a region of space is known to	
The constants b. w are given; b = 0.431, w = 0.531	
expressed in meters. Calculate the value of a, in S I.	
A) 0.5	
(B) 0.7	
expressed in meters. Calculate the value of a, in S I. (A) 0.5 (B) 0.7 (C) 0.9 (D) Zero	
(D) Zero	
53. A free electron is described by the quantum mechanical wave function A exp (i kx - i wt). The const potential energy of the electron is known to be 0.5 me V. If its total energy is 1 me V, approximately calcute value of k. (A) 0.22 / nm (B) 0.18 / nm (C) 0.15 / nm (D) 0.12 / nm	ant late
54. Electric field in a region is known to be A (x i + y j + z k); at the location (x, y, z); i, j, k are the usual unit ve along coordinate axes. The constant A is 10 milli V / m. In terms of the magnitude of electronic charge e,	ctors

55. The emf generated in a circular loop of radius 5 cm, is found to be uniformly increasing with time, at the rate of 1 m V/minute. The magnetic field $\,$ at the center of the loop is also increasing with time. At t = 0, its value is 0.4 S I and that of emf is zero. Calculate approximately, the magnitude of magnetic field at t = 2 minute.

(A) 10 SI

(A) 56 e

(B) 59 e (C) 62 e

(D) 65 e

(B) 16 SI (C) 21 SI

(D) 25 SI

56. Power of a semi convex lens A, made of glass of refractive index 1.5, is 0.25 dioptre. With another transparent material of refractive index 1.55, another semi convex lens B, is to be designed. Power of B is greater than that of A by 5 %. Calculate approximately the radius of curvature of lens B.

(A) 150 cm

(B) 180 cm

(C) 210 cm

(D) 240 cm 57. Intensity of light at the central maximum of a single slit diffraction pattern is 5 units. As viewed from the slit, the width of central maximum is 2 milli degree. Approximately locate the angular position of a point, where

the observed intensity is 3 units.

(A) 0.1 milli degree (B) 0.3 milli degree

(C) 0.5 milli degree

M25 M.Sc Physics

(D) 0.7 milli degree

SET C

```
58. The temperature of a metal sample is raised from 47 C to 57 C. Its electrical conductivity will
    (A) Rise by about 3 %
     (B) Rise by about 10 %
     (C) Fall by about 3 %
     (D) Not change
59. A certain amo
                                                        47 C. The heat needed is 4000 J. The entropy change in the
     process is
     .
(A) About 10 J / Kelvin
     (B) About 13 J / Kevin
     (C) About 19 J/Kelvin
     (D) Zero
  60. Resistance R of a semiconductor sample is measured at various values of temperature (recorded in Kelvin),
      The band gap of the semiconducting material is known to be 1 e V. A graph is now plotted with In R on y axis
      and 1/T on x axis. The expected magnitude of the slope of the graph is
      (A) About 2000 kelvin
      (B) About 4000 kelvin
      (C) About 6000 kelvin
      (D) About 8000 kelvin
 Let a, b,c be mutually perpendicular vectors. Then (a \times b) . (b \times c) has magnitude equal to
       (A) That of a
                                                           axb.a
       (B) That of b
       (C) That of c
       (D) Zero 🗸
  162. Let e be charge of electron and q be the charge of proton. The magnitude of (e q)/ (2 h c), using S1 units, is
        (A) 0.7 e V
        (B) 0.07 eV
        (C) 0.007 e V
        (D) None of the above
  63. Define "sound year" in a manner similar to "light year". Consider velocity of sound in air at zero clasius. The number of sound years equal to one light year, is about
```

64. A rectangular plot of land is measured. The sides are found to be of lengths 125 and 62 meters respectively. The expected error in each measurement is one percent. The expected error in area of the plot is

(A) 100 square meter (B) 125 square meter

(A) One thousand

(B) Ten thousand

(C) One million

(D) Ten million

(C) 135 square meter

(D) 155 square meter

M25 M.Sc Physics

	12
	of sald (of same quality) of
65. A tiny golden spherical ball of radius r is priced at l	Rs 3000. Another spherical ball of gold (of same quality), of
radius 2r; may be reasonably priced at Rs	RS 3000, Another spirerical ball of good (of saline quality), of
(A) 12000	4 5-300 199 AX30
(B) 24000	24 (2) 244
(C) 36000	2.
(D) 48000	
of The second is recovered to diameter of a	circle is two percent. The expected error in the calculated
circumference is about	Strope is the personal rise aspects and in the second
(A) 3.14	2"" U.S
(B) 6.28 percent	1/0 30%.
(C) 2 percent	" - T.D
(D) None of the above	1 C= 100 = DD:0
(D) None of the above	1. 06 = 00 = 00.00
67. The following is not a unit of electric field	, r
(A) N/ coul	<u> </u>
(B) Volt/meter	, E
(C) J/ (coul meter)	a. ev
(D) (ohm meter)/ coul 🗸	
 The potential energy function of a particle is U() 	() = af + bx; where a and b are positive constants and f
is square of x . The graph of U as a function of	x is
(A) A parabola	1200 St PM
(B) Straight line	nantanot por
(C) Circle	
(D) None of the above	
69. Bernoulli theorem is based on	
(A) Conservation of charge	
★B) Conservation of energy	
(C) Hooke's law	
(D) None of the above	
•	to the design of wood is known to
70. A wooden cube of volume 125 ml , floats on the	surface of water. The relative density of wood is known to
be 0.6. The volume of wood outside water is abou	t
(A) 10 ml	
(B) 20 ml	
(C) 40 ml	
(D) 50 ml	
	1 of () 1 mboro 3 = 0.5
L. A particle of mass 10 gm executes S H M, with equ	ation of motion as $x = a + b Sin(wt)$; where $a = 0.5$
meter, b = 0.8 meter, w = 3.14 rad/sec, t is in:	sec, x is in meter. Maximum kinetic energy of the
martiala is about	•/-
(A) 10 mJ	(a) (b)
(8) 30 -1 4	
(B) 20 mJ 🗸	YA OV
(C) 30 mJ	γ _γ γ _ν
(D) 40 mJ	"

SET C

M25 M.Sc Physics

٦	72. Angulai momentum conscivation is mixe	.u to				
	(A) Homogeneity of space					
	(B) Isotropy of space					
	(C) Time reversal invariance X					
	(D) None of the above					
	73. A planet has mass equal to that of the Ea	arth , but t	he value of	g on its surfac	e is 4.9 Sl. Assum	e that the
	planet has approximately spherical shap	e. Its aver	age density	is about		
	(A) 10 percent of Earth 's density					
	(B) 25 percent of Earth's density					
	(C) 35 percent of Earh's density					
	(D) 50 percent of Earth's density					
	• •					
	74. The eccentricity of a planet's elliptical or	rbit is 0.05	5 . The leng	gth of minor ax	is of the orbit is x	percent less
	than that of major axis. Approximate va	lue of x is				
	(A) 0.03			e= 0.05		
	(B) 0.06			er ve		
	(C) 0.09			X		
	(D) 0.12					
	75. Kepler's second law of planetary motio	n is linked	to			
	(A) Charge conservation					
	(B) Mass conservation					
	(C) Angular momentum conservation					
	(D) None of the above					
	76. Sin x is often approximated as x. Let th	ie exact va	lue of Sin x	be 0.5. The err	or made in using	the above
	approximation is about					
	(A) 5 percent					
	(B) 3 percent					
	(C) 2 percent					
	(D) 1 percent					
					معام ما ما العام الع	for 10 minutes
	77. A car travels on a straight road for 100	km, at uni	form veloci	ty of 30 km/h.	The car then naits	o velocity durin
	It then travels a further distance of 20	km, at a u	niform velo	city of 50 km/l	1. Find the averag	e velocity during
	the whole journey, in km/h.	7 20X	50			
	(A) 11	ゅ ^/				
	(B) 21	<i>/</i> .				
	(C) 31	00				
	(D) 41					
	78. A car is started at 8 am. It then travels	for an hou	ır at uniforı	nly decreasing	acceleration. At 8	: 15, car's speed
	is 30 km/h. At 8:30, its speed is 50 km/	/h. The tot	al distance	travelled by the	car is about	
	(A) 30 km	Age of				
	(B) 50 km					
	(C) 70 km					
	(D) None of the above					
	(b) Notic of the above					
						4 15
	M25 M.Sc Physics		SET C			
					The second second	

87. Particles of air vibrate, as a sound wave of frequency 1000 Hz passes by. Temperature of air is 20 C. If the maximum particle velocity is half of the wave velocity, calculate approximately, the amplitude of particle

79.	A block is accelerating down an inclined plane. The plane makes an angle of thirty degree, with the horizontal.
	The downward acceleration of the block has magnitude of 0.4 g . Calculate the coefficient of friction, between
	the block and the incline.
	(A) 0.11
	(B) 0.21
	(C) 0.31°
	(D) 0.41
80.	A simple pendulum has amplitude of ten degree. The approximate angular displacement , of the pendulum
	bob (from its mean position), where its speed is 75 percent of maximum speed; is
	(A) 2 degree
	(B) 3 degree
	(C) 5 degree
	(D) 7 degree
/	
81 .	A metal sample is heated from 50 degree C to 70 degree C. Its thermal conductivity will
	(A) Not change (B) Increase by 10 percent
	(A) Not change (B) Increase by 10 percent

82. A sound wave of frequency 500 Hz and a speed of 350 m/s is travelling in air. Approximately how far apart are two points of the medium, differing in phase by 60 degree?

(A) 10 cm

(C) Decrease by 10 percent

(D) None of the above 🗸

(B) 12 cm

(C) 15 cm

83. A string fixed at both ends is 8 meter long and has a mass of 120 gm. It is subjected to a tension of 100 N and set vibrating. What is the approximate speed of a wave, travelling along the string, with the longest possible wavelength?

(A) 80 m/s

(B) 100 m/s

(C) 120 m/s

(D) 140 m/s

84. A 15 cm violin string is vibrating in its n=1 mode. The speed of waves in this wire is 250 m/s and the speed of sound in air is 350 m/s. What is the wavelength of the emitted sound wave?

(A) 12 cm (B) 22 cm

(C) 32 cm

(D) 42 cm

85. Spherical sound waves are emitted in all directions uniformly, by appoint source radiating 25 watt. What is

the intensity (in SI), at 2.5 meter from the source?

(C) 0.52 (D) 0.62

vibration. (A) 32 mm (B) 42 mm (C) 52 mm (D) 62 mm 88. Muons have life time of 2 micro sec. Muons travelling with a relativistic speed v are found to survive (without decaying), during a journey of 100 km. approximately what is the minimum value of v? (A) 1 percent less than c (B) 0.1 percent less than c (C) 0.02 percent less than c (D) None of the above

siren, with a velocity of 30 m/s. Assume a temperature of 20 C.

89. A rocket is moving away from Earth, at a speed of 0.8 c. A missile is fired from the rocket, parallel to rocket's motion. The velocity of the missile, measured by an observer on Earth, is 0.95 c. Using relativity, find the velocity of the missile, with respect to the rocket observer.

(A) 0.6 c (B) 0.7 c

(C) 0.8 c

(A) 1150 Hz (B) 1170 Hz (C) 1200 Hz (D) 1220 Hz

(D) None of the above

90. The momentum of a relativistic proton is 1580 MeV/ c. Calculate its speed.

(A) 0.74 c

(B) 0.80 c (C) 0.86 c

(D) 0.93 c

10 1580= Jing

91. Proper mass of photon is

(A) Same as that of electron

(B) Same as that of muon

(C) Same as that of pion

(D) Zero >

92. Consider a relativistic electron with velocity v, such that the velocity difference (c -v) is only 1.6 cm/sec. Calculate approximately, the kinetic energy of the electron.

(A) 50 K eV

(B) 50 MeV

(C) 50 G eV

(D) 50 TeV M25 M.Sc Physics

40.25			
14575	16		100. The function f = (
93 Low anormy electron and po	sitron annihilate each other ar	nd two gamma rays are emitted. Calculate the	complex plane. T
gamma ray wavelength.	Sicroit diministrate court office.		(A) About 6.28 i
(A) 2.2 pm	>		(B) Zero
(B) 2.4 pm			(C) 2 i
(C) 2.6 pm	ý		(D) -2i
(D) 2.8 pm			(0)
94. For an electron moving with	h a speed of 0.6 c. find approxi	imately, the percentage error made, if its kinetic	
energy is calculated, using r	non relativistic formula.	2: 4:6	
(A) 40	ኔ .	mor re Two (0.6)	
(B) 43	30.00	24 Dy Ve xe 7 1 mo.36	
(C) 45 Lm	MINDY COXXIC	an cole	
(D) 48	2. 5 mg x10	30% One 3 - 7 mor 36	
95. An ac circuit carries a curre	ent, given by I = A Sin(w t) +	+ B Cos (w t) ; where A= 1 amp, B= 2 amp, w = 314	
rad/s,t is in sec. Find the r			
(A) 0.3 amp	0) "大" "大" """	
(B) 0.4 amp	1: 30 05) 6 % 2° ~	
(C) 0.5 amp	6.5	(10	
(D) 0.6 amp			
✓96. Average value of the function	on f = t + 3 · in the interval	t = 2 to t = 3 , is	
(A) 4 E	_		
(B) 5.5	the total	(-a) + o(1) 25+3 = 5+3= 3	
(C) 6.5	01 2 NO	(-4) + 2 25	
(C) 6.5	The	(47) 3	
97 In an LRC circuit, the SI valu	ues of L, R and C are each one	e unit. The circuit is subjected to sinusoidal voltage,	
of frequency 50 Hz, with pea	k voltage of 250 volt. Calcula	ate approximately the rms value of current in the	
circuit.			
(A) 0.35 amp			
(B) 0.45 amp			
(C) 0.55 amp			
(D) 0.65 amp			
	to sinusoidal voltage of free	quency f. Let S I values of L, C be one unit each and dance in the circuit will	
98. Consider an L C circuit subject assume f = 60 Hz. For one per	cent increase in f, the imper	dance in the circuit will	
	cont more and		
(A) Not change	ant.		
(B) Decrease by nearly 1 perc	ent		
(C) Decrease by about 2 perce	int		
(D) Increase by about 1 percei	nt	1 1 1 1 2 30 degree.	
an Turn sharers : A Sin (w t + a) a	nd B Cos (wt) are added ar	nd the sum is K Sin (w t). Let A=1, a = 30 degree.	
99. Two phasors; A siii (W C 1 2 / 2		, ended	
Calculate K.	45	10' A Com (107(+30) 7 300	
(A) 0.87	, V/2	A costot 8m30	
(B) 0.92	4"377	a compact cosso T Man at 1 + Bush	
(C) 0.95	Age to the second	C+ Awswitz	M25 M.Sc Phy
(D) 0.98	arm C	AGNW CAZ	WIZD WISC FIL
M25 M.Sc Physics	SET C	A Sm (27+30) + Bcus cot A Sm (27+30) + Bcus cot A Smart cusso + A custof sin 20+8cus A Smort & + A custof + Bcus of	
WIZJ WI.50 1 MJ			433
			-1 4 -1

(Sin Z)/ Z is integrated (in anti clockwise sense), along the unit circle, around the origin, in The value of the integral is