0

١.

Which one of the following is the correct formula for the lowest-energy eigenfunction for a particle in a one-dimensional box having infinite to the lowest-energy eigenfunction particle in a one-dimensional box having infinite barriers at x = -L/2 and L/2?

(A) $\sqrt{\frac{2}{L}} \sin\left(\frac{\pi x}{L}\right)$

(B) $\sqrt{\frac{2}{L}}\cos\left(\frac{\pi x}{L}\right)$

(C) $\sqrt{\frac{2}{L}} \exp\left(\frac{i\pi x}{L}\right)$

(D) $\sqrt{\frac{2}{L}} \exp\left(\frac{-i\pi x}{L}\right)$

For a single particle-in-a-ring system having energy $9h^2/8\pi^2I$ we can say that the angular momentum, when measured will report momentum, when measured, will equal:

 $(A) 3h/2\pi$

(B) √12h/2π

(C) either $3h/2\pi$ or $-3h/2\pi$

(D) zero

3. A molecule in a gas undergoes about 1.0 x 10° collisions in each second. Suppose that one collision in 10 is effective in deactivating the molecule rotationally. The width (in hertz) of rotational transitions in the molecule will be:

(A) 1.59 MHz

(B) 15.9 MHz

(C) 159 MHz

(D) Nore of the above

4. The rotational structure in the Raman spectrum of carbon dioxide (CO2), is offset from the wavenumber the incident radiation 2.3622 cm'. 8.6614 cm⁻¹, The rotational constant of carbon dioxide is:

(A) 0.3937 cm⁻¹

(B) 0.5906 cm

(C) 1.1811 cm-1

(D) 2.3622 cm

5. In a given cell, solution I transmits 42.0 per cent and solution II 85.0 per cent of radiation having a certain wavelength. What is the transmittance at the same wavelength of a solution made by mixing 35.0 cm3 of solution I and 55.0 cm3 of solution II, if no reaction occurs?

(A) 64.6 %

(B) 68.3 %

(C) 35.7 %

(D) 44.7 %

ΔH vap = 30 kJ mol⁻¹ and ΔS vap =75 kJ mol⁻¹K⁻¹. Find temperature of vapour, at one atmosphere: 6.

(A) 250 K

(B) 298 K

(C) 350 K

(D) 400 K

0.1 male of CH₃NH₂ ($K_b = 5 \times 10^4$ M) is mixed with 0.08 mole of HCl and diluted to one litre. 7. What will be the H* concentration in the solution?

 $(A) 8 \times 10^{-2} M$ (C) $1.6 \times 10^{-11} M$ (B) 8×10^{-11} M

(D) 8×10^{-5} M

The pH of a salt of weak acid with weak base is given by the expression if K, K, and K, are the 8. dissociation constants of water, weak acid and weak base respectively:

(A) $pH = \frac{1}{2} (pK_w + pK_a + pK_b)$ $(B) pH = \frac{1}{2} (pK_w - pK_a - pK_b)$

(C) $pH = \frac{1}{2} (pK_w + pK_a - pK_b)$

(D) $pH = \frac{1}{2} (pK_a + pK_b - pK_w)$

9. Nicotinic acid (K_a = 1.4 x 10⁻⁵ M) is represented by HNic. The % dissociation in a solution will be if it contained 0.1 mole of nicotinic acid per litre of solution:

(A) 1.673

(B) 4

(C) 6.673

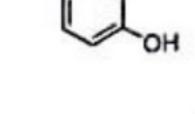
1.7010 11. 100 CES

11.8 ×10-7 82 ~ (h1) 2 cx2 ~ ~ 2018,

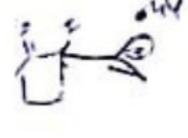
- An organic compound C3H6O does not give a precipitate with 2,4-dinitrophenyl hydrazine reagent and does not react with sodium metal. It could be 19. and does not react with sodium metal. It could be:
 - CH2=CH-CH2OH (A)

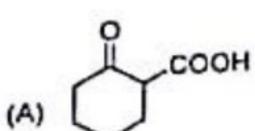
(B) CH2=CH-OMe

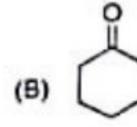
(C) CH3CH2CHO

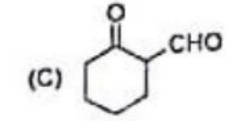

(D) CH3COCH3

20. 1. CHCI3. KOH P, Here 'P' is

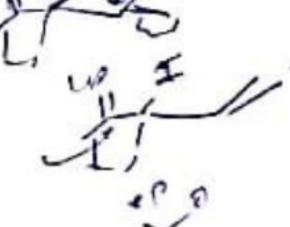

- (B)

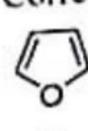

(C)

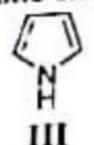

(D)



- 21.
- 1. l₂, NaOH P. Here 'P' is 3. heat

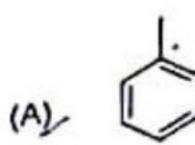


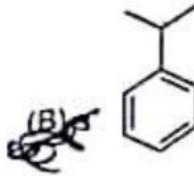



COOH (D)

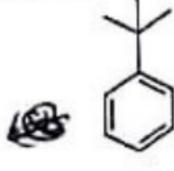
Correct order of aromatic character for the given compounds is: 22.

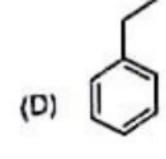
(A)


(C) III > I > II

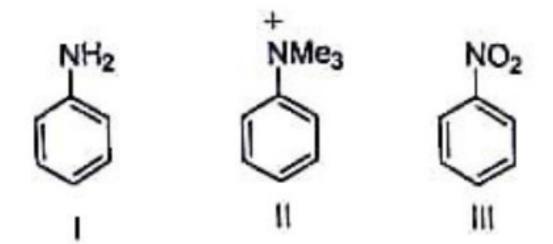


(0)


(A) 1 > 11 > 111 Which of the following will undergo nitration faster? 23.

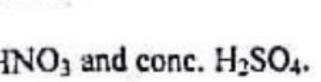

(B)

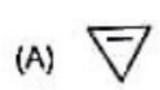
11 > 1 > 111


11 > 111 > 1

- For the electrophilic substitution reaction involving sulfonation, which of the following sequence
- regarding the rate of reaction is true? 24.

- (A) $k(C_6H_6) = k(C_6D_6) = k(C_6T_6)$
- (B) $k(C_6H_6) > k(C_6D_6) > k(C_6T_6)$
- ~ L(C,H6) < k(C6D6) < k(C6T6)


25.	Which of the following wil	give Friedel-Crafts reaction?
-----	----------------------------	-------------------------------

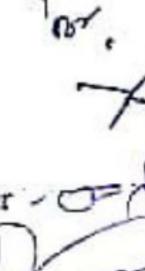


- (A) Only I
- (B) I and III
- (C) all of these
- (D) none of these

- The most basic compound among the following is: 26.
 - (A) Benzylamine
- (B) Aniline
- (C) p-Nitroaniline
- (D) Acetanilide

- Nitrobenzene can be prepared from benzene by using a mixture of conc. HNO3 and conc. H2SO4. 27. In the nitrating mixture HNO3 acts as.
 - (A) Acid
- (B) Base
- (C) Catalyst
- (D) Reducing agent ①
- The most acidic compound among the following is: 28.

- (C)
- (D)

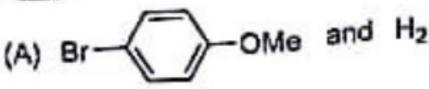


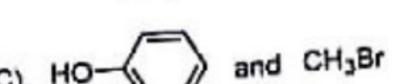
- The type of isomerism observed in urea molecule is: 29.
 - (A) Chain
- (B) Position
- (C) Geometrical
- (D) Functional

- Number of possible 3D-isomers of glucose are: 30.
 - (A) 4
- (B) 10
- (C) 16
- (D) 32

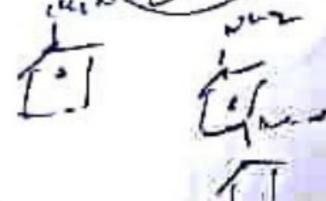
Which of the following compounds is optically active? 31.

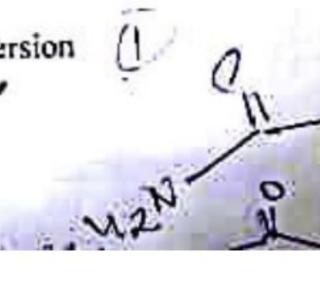
- (A) 1-Bromobutane
- (B) 1-Bromo-2-methylpropane
- (C) 2-Bromobutane
- (D) 2-Bromo-2-methylpropane




When cyclohexane is poured in water, it floats, because: 32.

- (A) Cyclohexane is in 'boat' form
- (B) Cyclohexane is less dense than water -
- (C) Cyclohexane is in 'chair' form
- (D) Cyclohexane is in 'crown' form


For the given reaction products A and B are, respectively: 33.



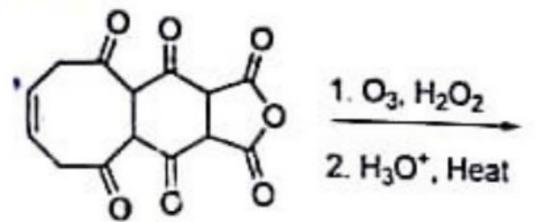
- and CH₃OH
 - and CH₃Br

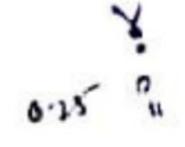
Mutarotation involves: 34.

- (A) Racemisation
- (C) Diastereomerisation
- (B) Conformational inversion
- (D) Optical resolution ,

35.	How many isomers are there of octahedral [CrCl ₂ (OH ₂) ₄]* and octahedral [CoCl ₂ (en) ₂]*? (A) 2 for [CrCl ₂ (OH ₂) ₄]*; 2 for [CoCl ₂ (en) ₂]*
	(B) 2 for [CrCl ₂ (OH ₂) ₄]; 3 for [CoCl ₂ (en) ₂]*
	(C) 3 for [CrCl ₂ (OH ₂) ₄]; 3 for [CoCl ₂ (en) ₂]*
	(D) 3 for [CrCl ₂ (OH ₂) ₄] ⁺ ; 2 for [CoCl ₂ (en) ₂] ⁺
	us 18 }
36.	For which pair of complexes is the order of values of Δ_{oct} correct?
	(A) $[Fe(CN)_6]^+ > [Fe(CN)_6]^+$
	(B) $[Rh(NH_3)_6]^{3+} > [Co(NH_3)_6]^{3+}$
	(C) $[Cr(OH_2)_6]^{2+} > [Cr(OH_2)_6]^{3+}$
	(D) $[CrF_6]^{3-} > [Cr(CN)_6]^{3-}$
	11/CMS
37.	Which one of the following is expected to exhibit a Jahn-Teller distortion?
	(A) [Mn(OH ₂) ₆] 4
	(B) $[Mn(CN)_6]$
	(C) [Fe(CN)6]"
	(D) $[Cr(OH_2)_6]^{3+}$
20	The Y3* ion is:
38.	(A) hard, and favours ligands with N- and/or O-donor atoms
	(B) · hard, and favours ligands with S- and/or P-donor atoms
	(C) soft, and favours ligands with S- and/or P-donor atoms
	(D) soft, and favours ligands with N- and/or O-donor atoms
39.	The reactions of [PtCl4]2- with NH3 (reaction I) and of [PtCl4]2- with [NO2] followed by NH3
	(reaction II) are ways of preparing:
	(A) 1: trans-[PtCl ₂ (NH ₃) ₂] : 11: trans-[PtCl ₂ (Nh ₃)(NO ₂)]
	(B) I: cis-[PtCl ₂ (NH ₃) ₂] ; II: trans-[PtCl ₂ (NH ₃)(NO ₂)]
	(C) 1: cis-[PtCl ₂ (NH ₃) ₂] ; II: cis-[PtCl ₂ (NH ₃)(NO ₂)[
	(D) I: trans-[PtCl ₂ (NH ₃) ₂]; II: cis-[PtCl ₂ (NH ₃)(NO ₂)]
40.	The ground state term symbol for Eu3+ is:
-	(A) 15° 21 10 7 15°
	(B) F
	(C) ;F"
	(D) 1F°
41.	Lanthanoid hydrides of formula LnH2:
	(A) contain the lanthanoid metal in oxidation state +2
	(B) are electrically conducting materials (C) possess 3-dimensional covalent structures
	- 1 1 July admin compounds
42.	Which of the following series contains only paramagnetic metal ions?
42.	(A) La' Ce' Sm'
	(B) Sm', Ho', Lu'
	(C) Ce', Eu', Yb'
	(D) La'. Gd'. Eu'.
	0, 2 1 5 ST
	U 63

Scanned with CamScanner

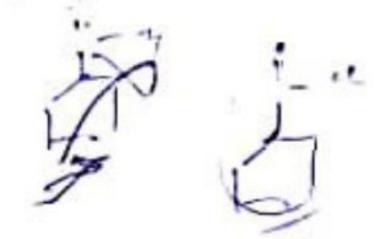

43.	Within the HSAB principle, a hard acid:
	(A) has a low charge density
	(B) shows a preference for soft bases
	(C) is not very polarizable
	(D) shows a preference for donor atoms of low electronegativity
44.	For the substitution of one H ₂ O ligand in $[Al(OH_2)_6]^{3+}$ by F., $log K_1 = 6.10$ at 298 K. The value of
	ΔG_0 for this process is:
	(A) -34.8 kJ mol ⁻¹
	(C) +34.8 kJ mol-1
	(B) = -15.1 kJ mol ⁻¹ (C) +34.8 kJ mol ⁻¹ (D) +15.1 kJ mol ⁻¹ $= -2.305 - 2.207 pr de ka$
	Which of the following equilibria has the largest value of binding constant (K)?
45.	(Hb= haemoglobin)
	(1)
	(A) $Hb + O_2 = Hb(O_2)$
	(B) $Hb(O_2) + O_2 = Hb(O_2)_2$
	(C) $Hb(O_2)_2 + O_2 = Hb(O_2)_3$
	(D) $Hb(O_2)_3 + O_2 = Hb(O_2)_4$ 157
46.	Which of the following is tri-functional Siloxane?
40.	
	(A) Dimethyl silicon chloride (B) Trimethyl silicon chloride
	(C) Tetramethyl silicon chloride
	(D) Momethyl silicon chloride
47.	Which of the following statements about fluorosulfonic acid, HSO3F, is incorrect?
	(A) HSO.F has a high dielectric constant
	(B) A mixture of HSO ₃ F and SbF ₅ behaves as a superacid
	(C) HSO, F is less viscous than H ₂ SO ₄
	(D) HSO ₃ F cannot be handled in glass apparatus
48.	[Cr(CN) ₆] ³⁻ is expected to be:
	(A) paramagnetic with µerr ≈ 3.87 µB
	(B) diamagnetic
	(B) diamagnetic (C) paramagnetic with μerr < 3.87 μB
	(D) paramagnetic with μerr > 3.87 μB
49.	Which of the protein activates Ca2+ pump?
	(A) Troponin C
	(B) Calmodulin
	(C) Actin
	(D) Tropomyosin
50	For high spin and low spin d6 octahedral complex ML6, the generally observed spin allowed
50.	tempetitions are
	(A) two and one
	(B) zero and one
	(A) two and one (B) zero and one (C) one and two (D) two and two
	(D) 1110 min 1110
42.411	2018


		20~	4 1	-d+ +6d_ 11d-	. :
			9	一十七二十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十	
51.	Acetic acid in benzene	solution forms dir	mer due to intermolecular U	- this case Van t	
			- memblecular Fi	-bonding. For this case	7
	(A) i=1		(B)i>1	100.	2
	(C) i < 1		(D) inclusive	1	2
52.	90% of a first-order t	reaction complete	s in 90 minutes 50% of	the reaction will be over in	
	approximately.		dica, 5076 01	the reaction	-
	(A) 50 minutes	\odot	(B) 54 minutes	900 0 - 42 Co) 15 2	
	(C) 27 minutes		(D) 62 minutes	L. Mugta	. ~
53.	Time for completion of	f 75% of a most	an in the	of the same	16
33.	reaction. Hence, the or	der of the reaction	on is thrice the time for co	mpletion of 50% of the same	
	(A) 0	- Crime reaction		9000.40)	9
	(C) 2	(600)	(D) 3 fa)	-3+80 - H7 3.	01
			1- 1-	77	. 0
54.	A cell reaction is spont	taneous if:	-+	Tace > Care	
	(A) $E_{cell} > 0$		(B) ΔG < 0	Lace bouse	
	(C) K > 1	0	(D) all of these	151	
	Control of the contro			1	-
55.			He has the highest entropy	per mole? _p-100 key	2
	(A) H2 at 25 °C at 1 at		(B) H ₂ at STP (D) H ₂ at 0 K at 1 atm	m-	
	(C) H2 at 100 K at ! at	ım —	(D) Hear or ar rain		
56.	If the heat of forma	ation of CoHo (I).	H2O (1) and CO2 (g) are	-X ₁ , -X ₂ and -X ₃ calories	_
	respectively, then hear			6he -1:02 ->6ce	2
	(A) $X_1 - X_2 - X_3$	0	(B) $N_1 - 6X_2 - 3X_3$	· ×1 - 6 · 3 ·	-
	(C) $X_1+X_2+X_3$		(D) $X_1 - 3X_2 - 6X_3$: 71 - 0	
		\ `ic·		1-0-0-02 XI	
57.	Conjugate base of HC		(B) HO	H-0- 30 00.)
	(A) Oz (superoxide ic	(n)	(B) H ₂ O ₂ (D) O ₂ ⁺	P = 021	
	(C) O2 (peroxide ion)			
58.	'x' moles of lead acc	etate and 0.1 mole	e of acetic acid were taken	in 1 litre solution to make a	
J. W. 107	solution of pH = 5.04.	. The value of 'x'	will be if pK.	He(NOs)s and Me(NOs)s is	•
	(A) 0.2 mole	•	(B) 0.05 mole	2002	
	(C) 0.1 mole		(D) 0.02 mole	1 -4	
			each of Cu(NO1), Agno	1. 118(1103)2 min 1.18(1103)2 13	
59.	A solution containing	g I mole per nue	cach of Capton of the St	andard oxidation potentials in $g^{2*} = 2.37$. The order in which	
	being electrolyzed by	y using inert elect	rodes. The values of the st	2° - 2 37 The order in which	
	value are $\Delta a/\Delta a^{\dagger} = -0$	$0.8: Hg/Hg^{2+} = -0.5$	79; Cu/Cu ²⁺ = -0.34; Mg/M	$g^{2*} = 2.37$. The order in which	
	Voits are Aging	to the authoric wi	11 be:	(i)	
	metals will be formed	at the cathode wi	(B) Ag, Hg, Cu, Mg	1 (900	
	(A) Ag, Cu, Hg, Mg		(D) Cu, Hg, Ag	war blacke	
	(C) Ag, Hg, Cu			bur wil	
				- 12 1x- 13 and	
		200	· ·	0	
	1 474		grante 6	2018	

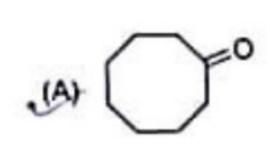
Scanned with CamScanner

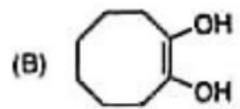
*	60.	E red (standard red	luction electrode pat-			
		E°	fuction electrode pote $E^{2+}_{Lu} = 0.34 \text{ V}; E^{\circ}_{Zn}$	intials) of different l	half-cells are given:	
		E°.	+ 4 = 0.80 V. Fo	$z_n = -0.76 \text{ V}$		
		In which cell is	$_{\text{g}}^{+}/_{\text{Mg}} = 0.80 \text{ V}; E_{\text{Mg}}^{\circ}$	/Mg = -2.37 V	0	
		/A\ 7- 1 7-2+ crace	s ΔG° is most negative	ve?		
		(C) Cu Cu ²⁺ (IM) Mg ²⁺ (IM) Mg) Ag ⁺ (IM) Ag	(B) Zn Zn ²⁺ (D) Ag Ag ⁺	(IM) Ag ⁺ (IM) Ag (IM) Mg ²⁺ (IM) M	
	61.	A catalyst accelera	ates the rate of reaction	on by:	, I I I I I I I I I I I I I I I I I I I	
		 (A) decreasing ene (B) increasing Arr (C) increasing both 	ergy of activation	3	stant or 17	8 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	62.	Which of the follo	wing can act as a prot	ective colloid?	(-2.	- cook
		(A) silica gel (C) oil-in-water en		(B) gelatin (D) all of these		
63. The class of voids that can existing in any close-packed			y close-packed stru	ctures are:	3 R. 163	
		(A) trigonal, tetrah (C) tetrahedral, oct	edral	(B) trigonal, oc (D) only octaho	tahedral (1)	T / 36.25
	64.	An electron trappe (A) n-type conduct (C) insulator	d in an anion vacancy tor	(B) p-type cond (D) F-centre	1 171	1 37.00 Ez
	65.	The ratio between (A) ¼ (C) 2	the root mean square s	(B) 1 (D) 4	and O ₂ at 800 K, is:	Jayren K
	66.	The r.m.s. velocity	of hydrogen is √7 tin	nes the r.m.s. veloci	ity of nitrogen. If T is the	e temperature
		of the gas then. (A) $T(U_{\bullet}) = T(N_{\bullet})$		-(B) T(H2) > T(N	V ₂)	304
		(A) $T(H_2) = T(N_2)$ (C) $T(H_2) < T(N_2)$		(D) $T(H_2) = \sqrt{7}$	T(N2) (300)	N 3P4
					1 J	1 56
	67.	Which of the follow	ving is a natural fibre?	(C) Cellulose	(D) Optical resolu	tion
		(A) Starch	(B) Rubber			126"
		The reason for normalizing a wavefunction ψ is: (A) to guarantee that ψ is square-integrable. (B) to make $\psi^*\psi$ equal to the probability distribution function for the particle. (C) to make ψ an eigenfunction for the Hamiltonian operator.			Jan Land	
, "		(C) to make ψ an el (D) to make ψ satis	fy the boundary condi-	tions for the problem		CONTROL
	69.		ving is not a condensat	(C) Dacron	(D) PTFE	
		(A) Glyptal	(B) Nylon-66	(C) Dacion	Q,	2018
	M-26		The state of	- on	The state of the s	2016

Total number of carbonyl groups present in the final product of the following reaction sequence are: 70.

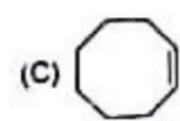


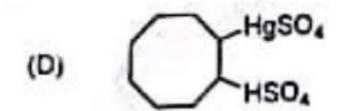
- (A) 6
- (B) 8
- (C) 2
- (D) 4

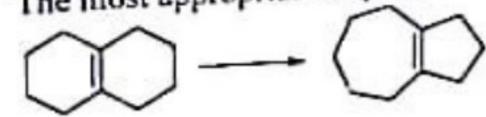

- Which of the following will give aldol? 71.
 - (A) Formaldehyde (C) Crotonaldehyde
- (B) Pivaldehyde
- (D) Benzaldehyde

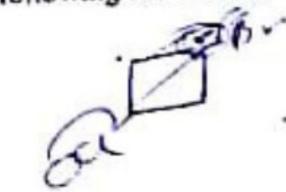


72. The 'UPAC name of C₆H₅COCl is:

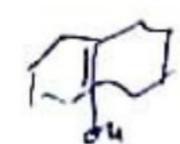

(C) Benzene chloro ketone

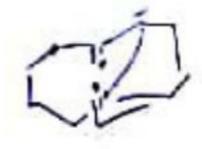

- (A) Benzoyl chloride
- Œ
 - (B) Benzene carbonyl chloride
 - (D) Chloro phenyl ketone
- The reaction of cyclooctyne with HgSO4 in presence of aq. H2SO4 gives: 73.





- When 1-Bromo-3-chlorocyclobutane is treated with two equivalents of Na, in the presence of 74. ether, it will produced.
- (B)


- The most appropriate sequence of reactions for carrying out the following conversion 75.



- (A) (i) Peracid; (ii) H; (iii) Zn / dil. HCl
- (B) (i) Alkaline KMnO4; (ii) H+; (iii) Zn / dil. HCl
- (C) (i) Alkaline KMnO4; (ii) NalO4; (iii) N2H4/KOH
- (D) (i) O3 / Me2S; (ii) NaOEt; (iii) N2H4 / KOH
- Which of the following is an example of basic dye? (C) Malachite (B) Indigo 76. (A) Alizarine
- (D) Orange-I

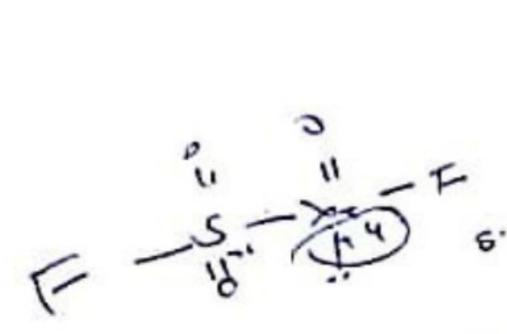
77.	The pH of the solution containing follo	owing zwitterion H ₃ N—H species is:
	(A) 7 (B) 9	(C) 4 (D) 0
78.	One letter code for 'Lysine' amino acid is:	
	(A) L (B) K	(C) R (D) Y
79.	Among the given dienes, which of the follow	
		ving orders of stability is correct?
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	(A) 1>11>11! (B) 11>1>111 (C) III	
	(V) 1>11>11; (B) 11>1>111 (C) 11!	>1>11 (D) 11>111>1
80.	The major product 'A' formed in the following	ng reaction sequence is:
	U	11 2 (4) 27
	1. CH ₂ N ₂ . Et ₂ O	ital and
	2. MeMgCI, Et ₂ O	- 15 60 - (c)
	O 3. 1430	CALINA . The
	0 0	0 0 ,
		Me H
	(A) (B) OMe (C)	(b) (1 Hr. 8.2)
1	✓ Me	Me Me
)	Me	2003
81.	During the addition polymerisation, the reac	tion proceeds via:
1	(A) Step-growth process	(B) Free-radical chain reaction
	(C) Cascade process	(D) Addition reaction
		198 5
82.	In DNA the percentage of guanine is 23, who	at will be the percentage of thymine?
	(A) 27 (B) 23	(C) 46 (D) 77
02	For the following reaction sequence what wi	If he the overall percentage of D?
83.	For the following reaction sequence with the	in oc the overall percentage of the
	A 90% B 50% C 90% D	·
	(A) 90% (B) 59.5%	(C) 40.5 % (D) 50%
11230		overlan with an atomic orbital of the same type on an
84.	Which of the following atomic orbitals can	overlap with an atomic orbital of the same type on an
	adjacent atom (both atoms lie on the x axis)	(B) 3d _{xy}
	(A) 2p _x	(D) 3px
	(C) 2s	
85.	In the emission spectrum of hydrogen, which	series of emission lines falls in the visible region?
65.		(B) Paschen
	(A) Lyman (C) Balmer —	(D) Pfund
86.	For which of the following elements, is	he process of attaching the first electron the most
	exothermic?	• 250
	(A) O	(B) H
	(C) I	(D) Na
		in the
		2018
M-26	vs ¹	70.
_ 20	A	

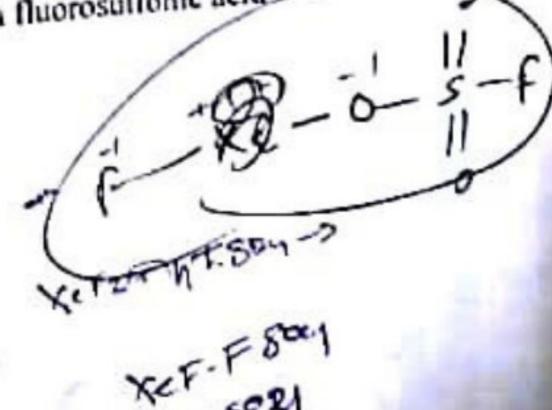
13 In an MO diagram for the formation of H2O in which the z axis bisects the H-O-H angle: 87. (A) the O 2p, atomic orbital interacts with an in-phase combination of H 1s atomic orbitals (B) the O 2p, atomic orbital interacts with an out-of-phase combination of H 1s atomic orbitals (C) the O 2pz atomic orbital is non-bonding (D) the O 2s atomic orbital is non-bonding An X2 molecule lies so that the X nuclei are on the z axis. The bonding MO formed by the overlap 88. (A) no nodal planes (B) one nodal plane (C) a nodal plane between the nuclei (D) two nodal planes Which of the following statements is true about an XY2 lattice? 89. · (A) The coordination number of X2n+ is twice that of Yn-(B) The coordination number of X2n+ is half that of Yn-(C) The unit cell contains twice as many X2 ions as Y"-(A.C (D) The coordination environments of X2" and Y" are the same 90. The coordination numbers of Ti(IV) and O2- in rutile are, respectively: (A) 6 and 3 (B) 3 and 6 (C) 2 and 4 (D) 4 and 2 91. Which of the following statements is incorrect about oxalic acid ($H_2C_2O_4$) for which $K_{a(1)} = 5.9 \text{ x}$ 10^{-2} M and $K_{a(2)} = 6.4 \times 10^{-5}$ M? (A) The observation that Kath > Kath is general for dibasic acids (B) Both H2C2O4 and its conjugate base behave as weak acids (C) pKa(1) > pKa(2) -(D) Oxalic acid forms salts including Na2C2O4, MgC2O4 and KHC2O4 In neutral aqueous solution, Eo for the Mn3+/Mn2+ couple is +1.54 V. At pH 14, Eo for the 92. Mn(OH)3/Mn(OH)2 couple is +0.15 V. Which of the following statements is incorrect? At pH 14, Mn(II) and Mn(III) both precipitate from aqueous solution as hydroxides Mn(III) is less stable with respect to reduction to Mn(II) at pH 14 than at pH 7 (B) The Mn(OH)3/Mn(OH)2 couple refers to an equilibrium involving Mn(III) and Mn(II) (C) At pH 7, Mn3+(aq) is a relatively strong oxidizing agent The enthalpy change for the dissociation: $M_2(g) \rightarrow 2M(g)$ is: 93. (A) more positive for Li2 than for K2 TI (B) more positive for Rb2 than for K2 (C) more positive for Na2 than for Li2 . (D) more positive for Cs2 than for K2

BeF2 dissolves in water to give [Be(OH2)n]2+ where: n = 394. (A) n = 2(D) (C) n=4

n = 6

- In which reaction does the cluster core undergo a significant change in shape? 95.
 - B10H14 + C2H2 1,2-C2B10H12 + 2H2
 - $Cs_2[B_6H_6] + HCI \rightarrow Cs[B_6H_7] + CsCI$
 - B5H9 + KH K[B5H8] + H2 (C)
 - B4H10 + CO → 1-B4H8(CO) + H2 (D)
- Which of the following statements is incorrect? 96.
 - GeO2 dissolves in basic aqueous solution to give [Ge(OH)6]2-
 - A C60 molecule has Ih symmetry (B)
 - Pb(NO3)2 and PbO2 are both water soluble 7(C)
 - 119Sn is an NMR active nucleus (D)
- Which reaction is unlikely to work? 97.
 - (A) $AsF_3 + SbF_5 \rightarrow [AsF_2]^+ + [SbF_6]^-$
 - (B) AICI3 + SbCI5 → [SbCL]+ + [AICL]-
 - SbCl₅ + 5HF → SbF₅ + 5HCl
 - $2SbCl_3 + Cl_2 + 4CsCl \rightarrow 4Cs^+ + [SbCl_6]^- + [SbCl_6]^-$ (D)




- The following data are for solutions at pH 0: 98.
 - $[S_2O_8]^{2} + 2e^* \Leftrightarrow 2[SO_4]^{2}$ $[Cr_2O_7]^{2-} + 14H^+ + 6e^- \Leftrightarrow 2Cr^{3+} + 7H_2O$
 - [MnO₄]" + 8H" + 5e" \ifftrape Mn²⁺ + 4H₂O
- $E^{o} = +2.01 \text{ V}$ $E^{o} = +1.33 \text{ V}$: E° = +1.51 V
- From the data, you can deduce that, at pH 0:
- · (A) [S2O8]2- will oxidize Cr3.
- (C) [SO₄]² will be oxidized by [Cr₂O₇]²
- (B) $[S_2O_8]^{2}$ will reduce $[MnO_4]^{-1}$ (D) $[S_2O_8]^{2}$ will reduce $[Cr_2O_7]^{2}$
- Which of the following correctly describes the trends in values of Pauling electronegativities (χ_p) 99. and ionic radii (rion)?
 - r_{ion} : F < CI < Br < I(A) χρ: F < Cl < Br < l;
 - r_{ion} : F < CI < Br < I
 - . (B) Xp: F > C1 > Br > 1: r_{ion} : F > CI > Br > I
 - (C) χ_P: F < Cl < Br < l; r_{ion} : F > CI > Br > I(D) $\chi_P: F > Cl > Br > I$;

 - Which statement about FXeOSO₂F is incorrect? The environment about the Xe centre is linear
 - The oxidation state of Xe is +2

100.

- (B)
- FXeOSO₂F can be prepared by treating XeF₂ with fluorosulfonic acid. (C) ~(D)

