lanstagram.com/jamiadrive

Paper Code No. : D-01

Question Booklet No. :

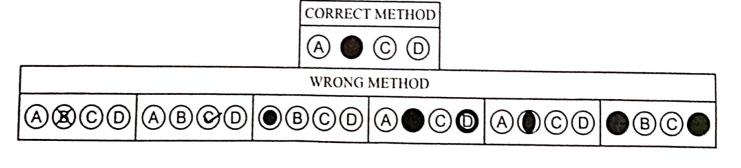
10232

ENTRANCE EXAMINATION – 2020

D - 01

SET - D

ROLL NO : 001 5 4 2 3 2


Time : THREE HOURS

Signature of Invigilator

Total Marks: 200

Instructions to Candidates

- Do not write your name or put any other mark of identification anywhere in the OMR Response Sheet. IF ANY MARK OF IDENTIFICATIONS IS DISCOVERED ANYWHERE IN OMR RESPONSE SHEET, the OMR sheet will be cancelled, and will not be evaluated.
- 2. This Question Booklet contains the cover page and a total of 200 Multiple Choice Questions of 1 mark each.
- Space for rough work has been provided at the beginning and end. Available space on each page may also be used for rough work.
- 4. There is negative marking in Multiple Choice Questions. For each wrong answer, 0.25 marks will be deducted.
- USE/POSSESSION OF ELECTRONIC GADGETS LIKE MOBILE PHONE, iPhone, iPad, page ETC. is strictly PROHIBITED.
- 6. Candidate should check the serial order of questions at the beginning of the test. If any question is found missing in the serial order, it should be immediately brought to the notice of the Invigilator. No pages should be torn out from this question booklet.
- Answers must be marked in the OMR response sheet which is provided separately. OMR Response sheet must be handed over to the invigilator before you leave the seat.
- The OMR response sheet should not be folded or wrinkled. The folded or wrinkled OMR/Response Sheet will not be evaluated.
- Write your Roll Number in the appropriate space (above) and on the OMR Response Sheet. Any other details, if asked for, should be written only in the space provided.
- There are four options to each question marked A, B, C and D. Select one of the most appropriate options and fill up the corresponding oval/circle in the OMR Response Sheet provided to you. The correct procedure for filling up the OMR Response Sheet is mentioned below.

ENTRANCE EXAMINATION – 2020

Paper Code No. : D 01

SET - D

1.	Electrons revolve around the nucleus in	orbitals which have
	A. Variable energy	_ B. Fixed energy
	C. Infinite energy	D. Zero energy
2.	Electrons revolve only in those orbitals	
	A. Half integral of 'h'	B. Integral multiple of 'h'
	C. Integral multiple of $\frac{h}{2\pi}$	D. Half integral multiple of 2π
3.	Lowest energy orbital is	
	_A. 2s	B. 2p
	C. 3s	D. 3p
4.	d-sub-shell can accommodate maximu	
	A. 2 electrons	B. 10 electrons
	C. 14 electrons	D. 6 electrons
5.	When atoms loose or gain electrons the	ncy acquire configuration of
	A. Next Nobel gas	B. Halogen
	C. Alkali metals	D. Alkaline metals
6.	Colloidal solution can	
	A. Scatter light	B. Not scatter light
	C. Absorb heat	D. Evolve heat
7.	Particle size in suspension is	
	A. Less than 10^3 nm	B. 10^2 nm
	C. Greater than 10^3 nm	D. 10 nm
Pap	per Code : D-01 / Set-D	[3] Entrance Examination - 2

8.	Which one is not strong electrolyte	
	A. KC1	B. KNO3
	C. CH ₃ COOH	D. NaClO ₄
9,	Lime water is	
	A. CaO	∠B. Ca (OH) ₂
	C. CaCO ₃	D. $CaCl_2$
10.	The rate of law for a reaction is $K[A][B]^2$ w	hich one of the following statement is false
	A. The reaction is first order in A	B. The reaction is second order in B
	C. The reaction is second order over all	D. K is the reaction rate constant
10.	Rate of reaction does not depend upon	
	A. Temperature	B. Concentration of reactant
	C. Pressure	D. Theory of expanding gases
12.	If n == 3, the electrons are in	
	A. K shell	-B. L shell
	C. M shell	D. N shell
13.	The minimum amount of energy needed to s	
	A. Activation energyC. Entropy of reaction	B. Energy of reaction
	C. Entropy of reaction	D. Reaction mechanism energy
14.	Which of the following statement about s-or	bital is incorrect
	A. They are found in all principal energy l	evels
	B. They are spherical in shape	
	C. They can only hold one electron	
	D. The maximum number of s-orbital in a	ny principal level is 1
15.	The electronic configuration of an element v	with atomic number 8 is
	A. $1s^2$, 2p6	B. $1s^2$, $2s^2$, $2p^6$
	A. $1s^2$, 2p6 C. $2s^2$, $2p^6$	D. $1s^2$, $2s^2$, $2p^4$

[4]

16.	One mole of H ₂ O equals	
	A. 22.4 L at 1 atm and 25°C	
	$_{-}B.$ 6.023 × 10 ²³ atoms of hydrogen and 6.023 × 10 ²³ atoms	atoms of oxygen
	C. 18 gm	
	D. 1 gal	
17.	Relative molecular mass of CO_2 is	
	A. 22	3. 44
	C. 66	D. 88
18.	When a chemical substance loses one or more electron	is it is said to be
		B. Reduced
	C. Decomposed	D. Displaced
19.	$2\text{FeSO}_4(s) \xrightarrow{\Delta} \text{Fe}_2O_3(s) + SO_2(g) + SO_3(g) \text{ is}$	an example of
	A. Addition reaction	B. Substitution reaction
	C. Decomposition reaction	D. Displacement reaction
20.	The non-metal which is liquid in nature is	
	A. Oxygen	B. Hydrogen
	-C. Bromine	D. Iodine
21.	Which one is not allotrope of carbon	
	A. Diamond	B. Graphite
	-C. Fullerene C-60	D. Gold
22.	Isotopes of an element have	
	A. Same physical properties	B. Different chemical properties
	C. Different number of neutrons	D. Different atomic numbers
23.	Calculate the number of particles in 0.1 mole of ca	
	A. 12.044×10^{23}	B. 1.51×10^{23}
	C. 6.023×10^{23}	
	0.023×10	-D. 6.023×10^{22}
Pape	per Code : D-01 / Set-D [5]	Entrance Examination

24. Example of isobar is	
A. ${}^{35}_{17}$ Cl and ${}^{37}_{17}$ Cl	B. ${}^{12}_{6}$ C and ${}^{14}_{6}$ C
C. $^{39}_{19}$ K and $^{40}_{20}$ Ca	D. ${}^{40}_{18}$ Ar and ${}^{40}_{20}$ Ca
25. Which atom has three unpaired electrons	s in its outer shell?
A. Boron	B. Carbon
C. Nitrogen	D. Oxygen
26. The hydrogen ion concentration of a solution	ution is 10^{-3} M. The nature of the solution is
A. Acidic	B. Basic
C. Neutral	D. Amphoteric
27. Rutherford's α -particle scattering exper	iment was responsible for the discovery of
A. Atomic nucleus	B. Electrons
C. Protons	D. neutrons
28. Which of the following substance is an	
A. Alcohol	B. Sodium chloride
C. Carbon dioxide	D. Sugar
29. Tyndall effect is observed due to	IAURIVE
A. Reflection of light	B. Refraction of light
C. Scattering of light	D. Polarization of light
	lculate the maximum number of electrons that can be
accumulated to any	B. Sub-shell
A. Orbital	D. Orbit
C. Shell31. The correct order of ionic radii of the	
31. The correct order of folic radii of the N^{3-} , O^{2-} , Na^+ and F^-	-1
A. $Na^+ < F^- < O^2 < N^{3-}$	B. $F^- < O^{2-} < N^{3-} < Na^+$
A. Na < F < O < N C. $O^{2-} < N^{3-} < F^{-} < Na^{+}$	B. $F < O < N < Na$ D. $N^{3-} < Na^+ < F^- < O^{2-}$
	2020
Paper Code : D-01 / Set-D	[6] Entrance Examination - 2020

•
ding pressure is
vation of momentum
vation of mass
um
2
he presence of excess of air.
g

[7]

40.	Whi	ch of the elements has two shells and both	are completely filled
	A.	Helium	B. Neon
	C.	Calcium	D. Boron
41.	Whi	ch one of the following ore is best concent	trated by Froth floatation process
	Α.	Magnetite	B. Siderite
	C.	Galena	D. Malachite
42.	Ext	raction of gold and silver involves leachin	g with CN ⁻ , silver is later recovered by
	Α.	Distillation	B. Zone refining
	C.	Displacement of Zn	D. Liquation
43.	Pur	est form of iron is	
	Α.	Cast iron	B. Hard steel
	C.	Stainless steel	D. Wrought iron
44.	A s	ubstance that donates a pair of electrons t	o form coordinate bond is called
	A.	Lewis acid	B. Lewis base
	C.	Bronsted Lowry acid	D. Bronsted Lowry base
45.	Sol	vay process is used to manufacture	
	A.	Potassium carbonate	B. Sødium carbonate
	C.	Sodium chloride	D. Sodium hydroxide
46.	Alk	ali metal with highest ionization potenti	al is
	Α.	Na	B. Li
	<i>∽</i> C.	Rb	D. Cs
47.	Wh	ich of the following species has the high	nest ionization potential
	Α.	Li ⁺	B. Mg ⁺
	C.	Al ⁺	D. Ne

[8]

48.	The	e orbits in which electrons move according to Bo	hr ar	`
	A.	Elliptical	B.	Cylindrical
	C.	Circular	D.	Oval
49.	For	mation of NH_4^+ is an example of		
	A.	Covalent bonds	B.	Electrovalent bonds
	C.	Coordinate bonds	D.	Double covalent bonds
50.	Wh	ile forming magnesium oxide (MgO), magnesium	n	
	A.	Loses one electron	_B.	Loses more than one electron
	C.	Gain one electron	D.	Gains more than one electron
51.	The	e hydroxide ion [OH ⁻] concentration of a solution	is 10	$^{-12}$ M. The pH value of the solution is
	Α.	12	В.	11 12, 8
	C.	2	D.	7
52.	ΑΊ	The chemical formula for gypsum is		
	Α.	CaSO ₄ · H ₂ O	B.	$CaSO_4 \cdot 1/2 H_2O$
		$CaSO_4 \cdot 2H_2O$	D.	CaSO ₄ · 10H ₂ O
53.	The empirical formula of the compound containing carbon and hydrogen is CH ₂ . The molecular			
	mas	ss of the compound is 70 amu. The molecular for	mula	
	Α.	C ₂ H ₄	B.	C ₃ H ₄
	C.	C ₄ H ₈	D.	C ₅ H ₁₀
54.	Cal	culate number of moles for 52 gm of Helium		
	_ A.	13	В.	12
		11		10
55.	The	maximum number of electron that can be accum	ulate	d in an energy level is
	A.	n ²	-B.	$2n^2$
	C.	2n	D.	Ν
				Entrance Examination - 2020

[9]

56.	Which of the following statement is correct		
	A. Size of an anion is greater than the atom from	whic	h it is formed
	B. Size of an cation is greater than the atom from	n whic	h it is formed
	C. The electronic configuration of an atom and i	ts catio	on is same
	D. The electronic configuration of an atom and i	ts anio	n is same
57.	The metal which is liquid at room temperature is		
	A. Mercury	B.	Lead
	C. Zinc	D.	Silver
58.	Ethanoic acid reacts with absolute ethanol in prese	ence of	an acid catalyst to give an ester. The
	reaction is called as		
	A. Saponification	B.	Esterification
	C. Hydrolysis	D.	Hydration
59.	Ethane with the molecular formula C_2H_6 has		
	A. 6 covalent bond	В.	7 covalent bond
	C. 8 covalent bond	RIP.	9 covalent bond
60.	$Zn(s) + CuSO_4(aq) \longrightarrow Zn SO_4(aq) + Cu (s)$		
	A. Addition reaction	B.	Substitution reaction
	C. Displacement reaction	D.	Elimination reaction
<u>61</u> .	The number of valence electron in Cl ⁻ ion are:		
	A. 7	B.	8
	C. 17	~D.	18
62.	The correct electronic configuration for sodium ato	m is	
	A. 2,8	B.	8, 2, 1
	C. 2, 1, 8	<i>∕</i> D.	2, 8, 1

[10]

63.	Wh	ich statement is incorrect for s-orbital		
	A.	They are found in all principal energy levels		
	В.	They are spherical in shape		
	C.	They can hold only one electron		
	D.	The maximum number of s-orbital in any princ	ipal e	nergy level is one.
64.	But	anone is a four carbon compound with the funct		
	A.	Carboxylic acid	B.	Aldehyde
	C.	Ketone	D.	Alcohol
65.	Wh	ich statement is false for colloidal solution		
	A.	The colloidal solution is a heterogeneous mixtu	ure.	
	В.	Relatively small size of particles and not seen	with n	aked eye.
	C.	These particle scatter beam of visible light.		
	D.	They do settle immediately.		
66.	The	e number of structural isomers in Pentane are		
	Α.	2 JAMIA DF	ЯВ ,	3
	C.	4	- D.	5
67.	Two	o objects of equal masses have velocities 3 mse	c ⁻¹ an	d 4 msec ^{-1} . The ratio of their kinetic
	ene	rgies is		
	A.	4:3	-B.	3:4
	C.	9:16	D.	none of these
68.	A be	ody is dropped from a certain height to the grou	nd wh	en it is halfway down, it possesses
	Α.	Kinetic energy	B.	potential energy
	C.	both kinetic and potential energies	D.	none of these

[11]

69.	A coolie carries a luggage of mass 40 Kg from one	end of the platform to another end of the plate-
	form through a distance of 50 m. The work done b	by the coolie is
	A. Zero	B. 40 Joules
	C. 2000 Joules	D. none of these
70.	Time taken by a 100 watts bulb to consume 5000	joules of energy is
	A. 100 sec	B. 500 sec
	C. 50 sec	D. none of these
71.	One horse power is equal to	
	A. 3.6×10^6 Joules	B. 746 watts
	C. 486 Joules	D. none of these
72.	Which element is used as a moderator in nuclear r	eactors?
	A. Uranium	B. Cadmium
	C. Mercury	D. Graphite
73.	Which of the following is a scalar quantity?	
	A. Displacement	B. Forze
	C. Acceleration	D. Work
74.	Which of the following pair of physical quantity is	vector?
	A. Distance & Displacement	B. Mass & Distance
	C. Displacement and velocity	D. Mass & Velocity
75.	A force of 6 Newtons and another of 8 Newtons (pe	rpendicular to first) can be applied to produce
	the effect of a single force equal to	
	A. 1 Newton	B. 2 Newton
	C. 14 Newton	D. 10 Newtons
Paper	- Code : D-01 / Set-D [12]	Entrance Examination - 2020

76.	When a body moves with a constant speed along a c	ircle	
	A. No work is done on it	B.	No acceleration is produced
	C. No force acts on the body	D.	Its velocity remains constant
77.	Two thin lenses of focal lengths 20 cm and 25 cm are	placed	l in contact. The effective power of the
	combination is		
	A. 1/9 diopter	В.	45 diopter
	C. 9 diopter	D.	none of these
78.	When white light passes through a glass prism one ge	ts spe	ctrum on the other side of the prism. In
	the emergent beam, the ray which is deviated least i	S	
	A. Violet	В.	Green
	-E. Red	D.	Yellow
79.	When an object is placed at a distance of 24 cm from		nvex lens, its real image is formed at a
	distance of 48 cm. The focal length of the convex le	ns is	
	A. 16 cm	B.	10 cm
	C. 12 cm	D.	none of these
80.	The final image produced by a simple microscope is	S	
	A. Virtual and erect	В.	Virtual and inverted
	C. Real and erect	- D.	Real and inverted
81.	The magnifying power of a simple microscope can	be inc	reased if we use convex lens of
	A. Higher focal length	B.	Smaller focal length
	C. Higher diameter	D.	Smaller diameter
82.	The focal length of the objective of a compound mi	crosco	ope is
	A. Greater than the focal length of the eye piece		
	B. Less than the focal length of the eye piece		
	C. Equal to the focal length of the eye piece		
	D. arbitrary		

83.	The length of an astronomical telescope is
	A. The sum of the focal length of the
	 A. The sum of the focal length of objective and eye piece B. The difference between for the
	 B. The difference between focal length of objective and eye piece C. product of the fearly
	C. product of the focal length of objective and eye pieceD. none of these
84.	Hone of these
04.	Which of the following Is transmitted by a wave?
	A. Amplitude B. velocity
	C. energy D. momentum
85.	Velocity of sound in vacuum (in msec ^{-1}) is
	A. Zero
	C. 3×10^8
86.	The example of non ohmic resistance is
	B. carbon resistance
87.	C. diode D. silver wire The specific resistance of the wire depends upon
07.	
	A. Its lengthB. its area of cross sectionC. its materialD. none of these
88.	In case of liquids, ohm's law is
00.	A. fully obeyed
	B. partially obeyed
	C. there is no relation between current and potential difference
	D. none of these
89.	The magnifying power of a compound microscope in terms of magnification Mo due to the objective and the magnifying power Me by the eye piece is given by
	A. $Mo \times Me'$ B. $Mo + Me$
	C. Mo – Me D. none of these
Paper	Code : D-01 / Set-D [14] Entrance Examination - 2020

90.	Ohn	n's law deal with the relation between		
	A.	Current and potential difference	B.	capacity and charge
	C.	capacity and potential	-Ð.	all are true
91.	One	volt is equal to		
	A.	1 joule	B.	1 newton/coulomb
	C.	l joule/coulomb	D.	1 newton/sec
92.	Uni	t of resistance is		
	A.	Volt / ampere	В.	volt ² / ampere
	C.	volt/ampere ²	D.	none of these
93.	The	e equivalent resistance of resistors in series is	equal to	
	Α.	Equal to the mean of component resistors		
	В.	less than lowest of the component resistors		
	C.	in between the lowest and the highest of the	e compon	ent resistor
	D.	Equal to the sum of the component resistor	s	
94.	In a	a circuit containing two unequal resistors con	nected in	parallel
	A.	The current is same in both the resistors	IRIV	
	B.	a large current flows through large resistor		
	C.	the voltage drops across both the resistor is	s the same	
	D.	none of these		
95.	Re	sistances of 20, 30 and 60 ohms are connected	d in parall	el and the combination is connected in
	ser	ries with 10 ohms resistance. The equivalent		
	Α.	10 ohms	В.	20 ohms
	C.		•Ð.	
96.	Th	ne quantity of electricity that deposits one gm	equivale	
	A.	Farad	B.	faraday
	C.	coulomb	D	
Pape	er Cod	de : D-01 / Set-D [15]	Entrance Examination - 2020

In electrolysis the mass of the substance liberat	ted at cathode is proportional to						
A. Quantity of electricity passed	B. strength of the current						
C. time of passage of current	d. none of these						
When the same current is passed for the same t	time through different electrolytes, the amount of						
the substance deposited at the electrodes are in the ratio of their							
A. Atomic weights	B. specific gravities						
C. chemical equivalent weights	d. atomic number						
A silver and zinc voltmeter are connected in ser	ries and a current is passed through them for time t.						
If the mass of zinc liberated is m, the mass of s	silver deposited would be nearly						
A. m	B. 1.7 m						
C. 2.4 m	D. 3.5 m						
The process in which light nuclei combine to form heavy nuclei is							
A. Fission	B. Fusion						
C. Radiation	D. None of these						
The mirror used in automobiles as back view	mirror is						
A. Plain mirror	-B. Convex mirror						
C. Concave mirror	D. None of these						
Splitting of a beam of white light into seven co	blours when passes through a glass prism is called						
A. Refraction	B. Reflection						
C. Dispersion	D. Deviation						
Which of the following is not electromagnetic	ic wave						
A. Light waves	B. Radio waves						
, C. x-rays	D. Sound waves						
r Code : D-01 / Set-D [16							
	6] Entrance Examination - 202						
	 A. Quantity of electricity passed C. time of passage of current When the same current is passed for the same the substance deposited at the electrodes are in A. Atomic weights C. chemical equivalent weights A silver and zinc voltmeter are connected in set If the mass of zinc liberated is m, the mass of A. m C. 2.4 m The process in which light nuclei combine to A. Fission C. Radiation The mirror used in automobiles as back view A. Plain mirror C. Concave mirror Splitting of a beam of white light into seven co A. Refraction C. Dispersion Which of the following is not electromagnet A. Light waves C. x-rays 						

104. When a bunch of keys on the end of a chain is swing round a steady speed in a circle

- A. It has an acceleration towards the center of the circle
- B. It is pulled by the chain with centripetal force
- C. It exerts a centrifugal force of the chain
- D. none of these

105. A body of mass 2 Kg moving on a horizontal surface with an initial velocity of 4 msec⁻¹ comes to rest after 2 seconds. If one wants to keep this body moving on the same surface with the velocity of 4 msec⁻¹ the force required is

D.

Β.

D.

B.

D.

zero

positive but not maximum work

maximum work

 $0.1 \mathrm{msec}^{-1}$

0.05 msec

- A. 8 Newtons B. 4 Newtons
- C. 2 Newtons
- 106. A man pushes a wall and fails to displace it. He does
 - A. Negative work
 - C. no work at all
- 107. A bullet of mass 0.1 Kg is fired with a speed of 100 m sec⁻¹. The Mass of gun is 50 Kg. The velocity of the recoil is
 - A. 0.2 msec^{-1}
 - C. 0.5 msec^{-1}
- 108. When ray of light enters a glass slab from air
 - A. Its wavelength decreases _B. Its wavelength increases
 - C. Its frequency increases D. none of these
- 109. It is possible to observe total internal reflection when a ray travel from
 - A. Air into water B. air into glass
 - C. water into glass _D. glass into water

110. If the critical angle for total internal reflection form a medium to vacuum is 30°. The velocity of light in the medium is

 $A. 3 \times 10^8 \text{ msec}^{-1}$ B. $1.5 \times 10^8 \text{ msec}^{-1}$

 C. $6 \times 10^8 \text{ msec}^{-1}$ D. none of the these

ſ

Paper Code : D-01 / Set-D

17]

111.	T	winkle of stars is a phenomenon due to		
	A	Refraction of light		
	C.	Scattering of light	.∕₿.	Reflection of light
112.	A	convex lens can form a virtual image of the object	D.	Polarization of light
	A.	Between the lens and its focus		
	C.	between f and 2f	B.	the focus of the fells
113.	A	virtual image larger than the object can be produce	_D.	at infinity
	A.	Convex mirror	∠u by	Comming
	C.	Plain mirror	,в. D.	Concave mirror Concave lens
114.	Tra	ansverse wave can propagate	۵.	Concave iens /
	A.	Both in a gas and a metal	B.	in a gas but not in metal
	C.	not in a gas but in metal	D.	neither in gas nor in metal
115.	Wł	nich of the following is a longitudinal wave?		
	A.	Second wave	В.	Water wave
	C.	Light wave	D.	none of these
116.	The	e law that governs the force between electric charge	ges is	called
	<u> </u>	Ampere's Law	В.	Coulomb's Law
	C.	Faraday's Law	D.	Ohm's Law
117.	Wh	ich of the following is a unit of electric charge?		
	A.	Coulomb	Β.	Newton
	C.	Volt	D.	Coulomb/Volt
110		electric field can deflect		
		X-rays		neutrons
	A.		D.	none of these
155	C.	protons [18]		Entrance Examination - 2020
Paper (Code	: D-01 / Set-D		

119.	The electric charge at rest produces	
	A. An electric field only	B. magnetic field only
	Cr both electric and magnetic field	D. none of these
12 <mark>0</mark> .	Check the correct relation	
	A. Potential = charge / capacity	-B. Potential = charge + capacity
	C. Potential = charge \times capacity	D. none of these
121.	The unit of electric field intensity is	
	A. Newton/coulomb	B. Joule/coulomb
	c. Volt/meter	D. Newton/meter
122.	Current in a conductor is due to	
•	A. Motion of free electrons in it	B. motion of +ve ions
	C. free electrons and holes	D. protons
123.	When the temperature of the metallic conductor	is increased, its resistance
	A. Always decreases	B. always increases
	C. remains the same	D. may increase or decrease
124.	A kilowatt hour is a unit of	
	A. Energy	B. power
	C. electric charge	D. electric current
125.	Heat produced in a resistance R when current I flo	ws through it for time t is given by the relation
	A. $IR^2 / 4.2$	B. $I^2 Rt / 4.2$
	C. $4.2 \text{ IR} / t^2$	D. $IRt^2 / 4.2$
126.	Heat produced in a conductor is	
	A. Directly proportional to its resistance	
	B. inversely proportional to its resistance	
	C. inversely proportional to time	
	D. none of these	
Paper	Code : D-01 / Set-D [19]	Entrance Examination - 2020

127	. Y	ou are given three bulbs of 25, 40 and 60 watts	which	of these has lowest resistance
	A.		В	
	C.	60 watts	D	insufficient data
128	• Al	ternating current is one which changes in		
	A.	Direction	B.	magnitude
	C.	magnitude as well as direction	D.	none of these
129.	Th	e frequency of A.C. mains in India is		
	A.	30 c/s	B.	50 c/s
	C.	60 c/s	D.	120 c/s '
130.	Phe	enomenon of radioactivity is associated with		1 = V
	A.	Fission of nuclei		1 + 4 , NOT NY + X3
	B.	disintegration of neutrons		$\frac{1}{224} \pm 4 + \frac{1}{124} = 7$ $\frac{1}{224} \pm 157 = 5 \times 3$ $\frac{1}{224} \pm 157 = 14$ $\frac{1}{554} \pm 157 = 14$
	C.	emission of spectral lines spontaneous		554 483
	D.	disintegration of nuclei of atoms		664 + 45v = 15 664 + 45v = 14 554 + -11
131.	Rad	lioactive substance do not emit		$-\frac{1}{114} = 1$
	Α.	Alpha rays	B.	beta rays $h = \frac{1}{11}$
	C.	positrons	D.	protons $6 + 45v =$
132.	Ener	rgy generation in stars is mainly due to		protons $6 + 45v =$ $\rightarrow 45v = 9$ = 1 v = 5
	A.	Chemical reaction	B.	fission of heavy nuclei
	C.	fusion of light nuclei	D.	fusion of heavy nuclei $\frac{22}{11}$
133.	The	half-life (T) and decay constant (λ) of a radioact	tive su	bstance are related as $U = \frac{1}{11}$
	A	$\lambda T = 1$	B.	$\lambda T = 0.693 \qquad \qquad \forall = 5$
	C.	$T/\lambda = 0.693$	D.	$\lambda/T = 0.693$ $\gamma_{ty} = 1$
Paper	Code :	D-01 / Set-D [20]		$v_1 - y =$ Entrance Examination - 2020

		- 8	-1=-5
134.	If we add 1 to the numerator and subtrac	t 1 from the denominator a fraction be	comes 1. It also
	becomes $\frac{1}{2}$ if we add 1 to the denominator		$\frac{1}{3^{2}} = \frac{1}{2}$ $\frac{1}{3^{2}} = \frac{1}{2}$ $\frac{1}{3^{2}} = \frac{1}{2}$
	A. 2/3	B. 3/4	7) 2m-y=1
	C. 4/5	D. 3/5	
135.	A person borrowed Rs. 16550 from bar	nk. The rate of interest is 10% per ann	um compound
	interest. He pays it back in three equal ar		
	A. Rs. 7171	B. Rs. 6713	
	C. Rs. 6655	D. Rs 7115 avings bank account as 10°	6 4 6
136.	In mostly banks interest is calculated in s	avings bank account as	6 + 16
	A. Minimum balance in 6 months as p	inciple for 1 month	\
			- 52
	B. Maximum balance in 6 months as p	rinciple for I month	100
	C. Minimum balance in 6 months divid	ded by 6 and known as 1 month principle	= 52 24 1°18 XE2
	D. Minimum balance in 6 months of ea	ach month as principle for I month	1
137	The cost of a television set is Rs. 7500. T	he buyer agrees to pay Rs. 4000 in cash, i	followed by 4
	equal monthly installments of Rs. 900 ca	sh. The rate of interest paid by the buyer	is
	A. 4%	B. 14%	4 + 4
	C. 10%	D. 15%	14
138	8. The solution of the equations $\frac{22}{x+y} + \frac{1}{x+y}$	$\frac{15}{-y} = 5$ and $\frac{55}{x+y} + \frac{45}{x-y} = 14$ is	22 - 1-3
	A. 8,3	B. 6, 3	3 21-45
	C. 3, 6	D. None of these	
	$\int \mathbf{r} = \int \mathbf{v} = 10$	32+ -	15 6-16
13	9. If $\sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} = \frac{10}{3}$ and $x + y = 10$, then the	the value of x. y is $\frac{9}{21+4\Sigma}$	36+ 16 = 32
	A. 24	B. 9 4	22 + 15
	C. 16	D. 36 $\frac{67}{9}$	11 2
	- 12 19	2	2+3
Pa	aper Code : D-01 / Set-D	21] Entrance Exam	nination - 2020
114	-u2		r 1 45

140. If
$$\left(x - \frac{1}{x}\right) = 2$$
, then the value of $\left(x^{4} + \frac{1}{x^{4}}\right)$ is
A. 4
C. 12
D. 34
H11. The value of $\frac{(x^{2} - y^{2})^{2} + (y^{2} - z^{2})^{3} + (z^{2} - x^{2})^{3}}{(x - y)^{3} + (y - z)^{3} + (z - x)^{3}}$ is
A. $(x^{2} - y^{2})(y^{2} - z^{2})(z^{2} - x^{2})$
A. $(x^{2} - y^{2})(y^{2} - z^{2})(z^{2} - x^{2})$
B. $3(x^{2} - y^{2})(y^{2} - z^{2})(z^{2} - x^{2})$
C. $(x + y)(y + z)(z + x)$
D. $3(x + y)(y + z)(z + x)$
H12. The ages of Mr. X and Mr. Y are in the ratio of 7: 9. 12 years ago the ratio of their ages was 3: 5.
After how many years the ratio of ages becomes 6: 7.
A. 15 years
C. 27 years
H13. For what value of k will $kx + 2y = 5$ and $3x + y = 1$ have unique solution
A. $k = -6$
C. $k = 6$
D. $k = 2$
H14. If $\sin \theta = \frac{m}{n}$ and $\sqrt{n^{2} - m^{2}} = 1$, then $\tan \theta$ is equal to
A. $\frac{\sqrt{n^{2} - m^{2}}}{2}$
C. $\frac{m^{2}}{2}$
D. $\frac{m^{2}}{2}$
D. $\frac{m^{2}}{2}$
D. $\frac{m^{2}}{2}$
D. $\frac{m^{2}}{2}$
Paper Code : D-01 / Set-D
L 22]
Entrance Examination - 2020

145.	If $\sin (\alpha + \beta) = \cos (\alpha - \beta) = \frac{\sqrt{3}}{2}$, then the values of α	α and β are
	 A. 15°, 45° C. 15°, 15° 	"B. 45°, 15°
146.	If $\tan \theta = -\frac{5}{12}$ and $\frac{3\pi}{2} < \theta < 2\pi$, then $\cos\left(\frac{\theta}{2}\right)$ is equal	D. 45°, 45° Il to
	A. $-\frac{5}{\sqrt{26}}$	B. $\frac{5}{\sqrt{26}}$
	C. $-\frac{12}{13}$	D. none of these
147.	If $\tan \theta \sqrt{e^2 - 1}$, then $\{\sec \theta \neq (\tan^3 \theta \times \csc \theta)\}$ is	equal to
	A. e^3 C. $(e^2 - 1)^{3/2}$	
	C. $(e^2 - 1)^{3/2}$	B. $e^{3/2}$ D. $(e^2 - 1)^{7/2}$ $(e^2 - 1)^{7/2}$ $(e^{3} - 1)^{7/$
148.	$\sin^6\theta + \cos^6\theta + 3\sin^2\theta\cos^2\theta = \dots$	(3:120) 5 + (cos 0 + (03:0) = 1
	A1	
	-C. 1 JAMIA DR	D. 2
149.	A point is at a distance of 100 m from the front of	a tree. If from the top of the tree the angle of
	depression of the point is 45°, then the height of t	he tree is
	A. 50 m	_B. 100 m
	C. $50\sqrt{2}$ m	D. $100\sqrt{2}$ m
150.	The centroid of a triangle with two vertices (3, 4),	(-1, -9) is $(2, -4)$, the coordinates of the third ¹
	vertex are	3-14M, 4-1 472+N, -5
	A. (-4, -7)	B. (4, -7)
	C. (4, 7)	D. $(7, 4)$ $n+L=2$ =11=0
Paper	Code : D-01 / Set-D [23]	Entrance Examination - 2020

151		
151.	The origin divides the line joining $(-4, -2)$ and $(8, -2)$	4) in the ratio
	A. 1:2	B. 1:1
	C. 1:3	D. 2:3
152.	Ratio line $2x + 3y + 7 = 0$ divides a line joining the	points (2, 3) and (5, 6) will be
	A. 5:1 internally	B. 5:1 externally
	C. 4:7 externally	d. 3:7 internally
153.	The area of a parallelogram ABCD is 'X' cm ² . T be area of \triangle ABT is	a point at BC such that $BT = \frac{1}{3}BC$. Then the
	(
	A. $X/6 \text{ cm}^2$	B. $X/9 \text{ cm}^2$
	C. $X/12 \text{ cm}^2$	D. $X/3 \text{ cm}^2$
154.	A flag stands on a building, its top and the bas respectively. This point is 45 m apart from the base	
	A. $15\sqrt{3}(\sqrt{3}-1)$ m	B. $15\sqrt{3}(\sqrt{3}+2)$ m
	C. / 45√3 m	D. none of these
155.	\triangle ABC is a right triangle. From A perpendicular AD AC = 12 cm, then the length of AD will be	
	A. 156/3 cm	B. 65/12 cm
	C. 60/13 cm	D. 117/8 cm B 5 cm A
156.	Four triangles which are made by joining the mid p	oints of the sides of a triangle, is
	A. isosceles triangle	B. equilateral triangle
	C. similar but not congruence triangle	D. congruence triangle
157.	Two chords AB and CD of a circle intersect each oth and $AP = BP = x$ cm, then x is equal to	er internally at P and if $CP = 8$ cm, $DP = 1$ cm
	A. $\sqrt{2}$ cm	B. $2\sqrt{2}$ cm
	C. 4 cm	D. $4\sqrt{2}$ cm
Paper	Code : D-01 / Set-D [24]	Entrance Examination - 2020

A circle whose diameter is 10 cm and has two chords parallel to each other and of lengths 4 cm 158. and 6 cm respectively the distance between the chords is about Α. 0.26 cm 0.58 cm B. C. 0.53 cm D. None of these The two chords AB and CD of a circle intersect each other at an external point O. If AO = 6 cm, 159. OB = 12 cm and OC = 8 cm then OD is equal to 4.5 cm A. B. 9 cm C. 14 cm D. None of these Water is flowing at the rate of 2 m/sec from the pipe of diameter 7 cm. Flow of water in 160. litre/minute is 630 990 A B. D. None of these 462 C. A cone is cut half way by a plane parallel to the base, the volume of two portions are in the ratio 161. B. 1:3 A. 1:1JAMIA DRIVE -C. 1:2 The total surface of a sphere and a cube are equal. The ratio of their volumes will be 162. 4832=695 A. $\sqrt{6}:\sqrt{\pi}$ B. 6:π 1 Sint C. $\sqrt{\pi}:\sqrt{6}$ $D \pi: 6$ A sphere of radius r cm is to be converted into a cube. The side of the biggest cube so made will be 163. B. $\frac{2r}{\sqrt{3}}$ cm A. $\frac{r}{\sqrt{3}}$ cm $\frac{4}{2}\pi\gamma^3 = 0^3$

C. $\frac{2r}{\sqrt{2}}$ cm D. $\frac{r}{\sqrt{2}}$ cm

Paper Code : D-01 / Set-D

25

1

			, st			27
164,	The diameter of	the base of a con	ne is 42 cm a	nd its volume	e is 12936 cm ³ ,	It's height is
	A. 28 cm				21 cm	
	C. 35 cm			D,	14 cm	$\frac{1}{3} \times 2^{2} h = 12.93 \mu$ =) 22 × 4.4 h = 41 h =1 h = $\frac{616}{22 \times 441}$
165.	If \bar{x} is the mean	of p observation	ons then the	sum of all ob	servations is	$=1h = \frac{616}{22\times 441}$
	A. $\bar{x} + p$				$\bar{x} - p$	
	C. $\bar{x}(p)$				$p(\bar{x})$	
166.	A frequency table	e is a table which	n displays the			re distributed over :
	A. One class			B.	Eight classes	ie distributed over :
<i>k</i> –	C. Several clas	ises		D.	Class interval	
167.	The frequency of	f 3 numbers 4, 6	5 and 8 are (.)			ely. If their arithmetic
	mean is 5.67 the	a the value of x	will be		, , respective	ery. If their artifimetic
	A. 7			В.	6	
	C. 8			D.	4	
168.	In the following	series the frequ	ency distribu	ition of the m	arks obtained is	given :
	Marks obtained	10		14 NR//	16	18
	No. of subjects	4	6	5	x	2
		l_				
	If the arithmetic	mean of marks	obtained is 1	3.3 then the	value of x is	
	A. 4			В.	5	
	C. 3			D.	6	
169.	'OGIVE' is a pre					
	A. Ungrouped			В.	Frequency set	ries
	C. Distribution	of cumulative	frequency	D.	Grouped seri	es

[26]

170.	The value of x in $\frac{\sqrt{324}}{\sqrt{49}} \times \frac{\sqrt{676}}{\sqrt{169}} \times \frac{12}{\sqrt{169}}$	$\frac{26}{81} = x$ is	2/338 2XII 13/169 13/189 13/13
	A. 18	B. 72	2/1289/2
	C. 36	D. 65	36 35 X
171.	If $(x - p)$ is the H.C.F. of $x^2 - x - q$	6 and $x^2 + 3x - 18$, then the value o	f p is
	A. p = 3	B. p=4	16
	C. p = 6	D. p = 1	90
172.	A number when divided by 5, 6, 7	and 8 remainder is 3 and when divi	ided by 9 remainder is 0.
	Number is		211633
	A. 1680	-B. 1683	1/24
	C. 1783	D. 1769	N=2-4)14
173.	If $x = (2)^{1/3} + (2)^{2/3} + 2$, then the value	alue of $x^3 - 6x^2 + 6x$ is $8 - 6x^2 + 6x$	124+12-2 2) 1255 2) 1255 2) 14 2) 14 2
	A. 2 64 -	96+24 B. 3 28	$(336)^{38}$
	C. 6	8- D. 8	3)1685 (
174.	If $\frac{4+3\sqrt{5}}{\sqrt{5}} = a+b\sqrt{5}$, then the	value of b is RIVE	$\frac{4}{\sqrt{5}} + \frac{3\sqrt{5}}{\sqrt{5}} = c_1 + b_2$
	A. 3/5	B. 4/5	×3 ×0
	c. 2/5	D. 1/5	(1) 2) (5) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
175.	If $x = \frac{u+v}{1-uv}$ and $y = \frac{u-v}{1+uv}$, then t	he value of $\frac{x+y}{1-xy}$ is	
	A. $\frac{u}{1+v^2}$ $\frac{u+v}{1-uv}$	$\begin{array}{c} H = \frac{1}{1+\frac{1}{$	31/5 -0 61/5 JS -6 JS 1/5 -6
	C. $\frac{2u}{1+u^2}$	D. $\frac{2u}{1-u^2}$	TRIVE
	7		

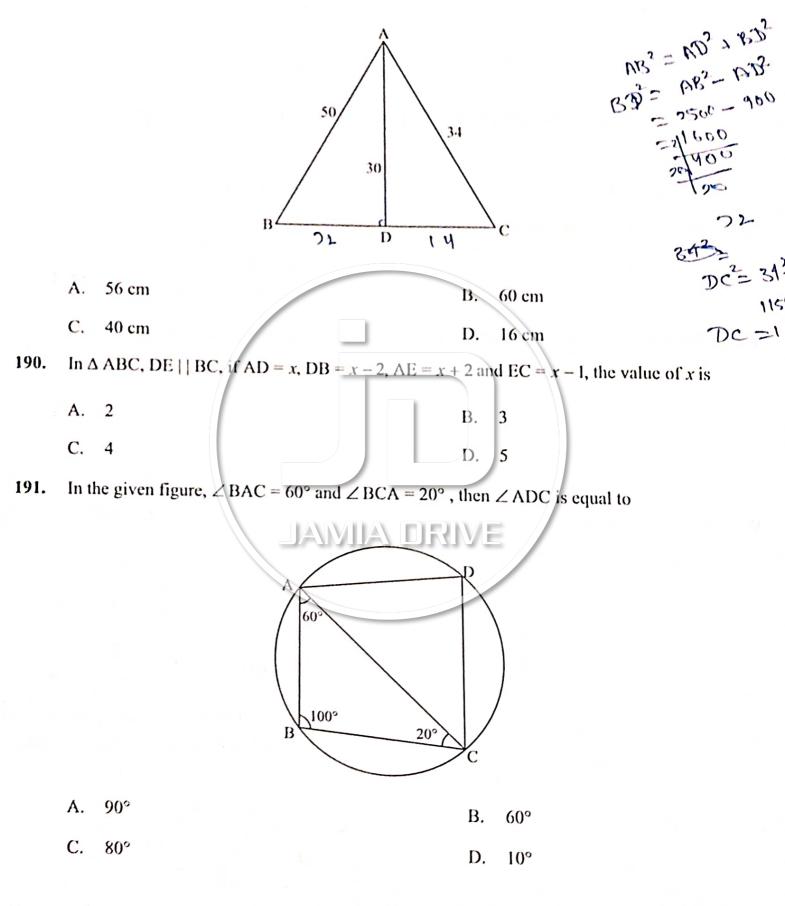
[27]

176. The sum and product of the zeros of quadratic polynomial are 2 and -15 respectively. The quadratic polynomial is

	A. $x^2 - 2x + 15$	В.	$x^2 - 2x - 15$
	A. $x^2 - 2x + 15$ C. $x^2 + 2x - 15$	D.	$x^2 + 2x + 15$
177.	The $\log_{10} (x^2 - 6x + 45) = 2$, then the values of x ar	e	
	A. 6,9		9, –5
	C. 10, 5	D.	11, -5
178.	The two numbers are such that their product is equal t	o thei	ir sum and the numbers are equal. They
170	are		
	A. 4,4	в.	2, 4
	C. ' 2, 2	D.	4, 2
179.	If α , β are the roots of the equation $3x^2 - 2x - 5 = 0$.	Then	the value of $\alpha^3 + \beta^3$ is
	A. 98/27	B.	10/27
	C. 80/81	D.	10/3
180.	If α , β are the roots of the equation $(x-a)(x-a)$	- b) =	c, then the roots of the equation
	$(x-\alpha)(x-\beta)+c=0$ is	÷	$D = 4 - 4 \cdot 3x^{-1}$
	A. a, c	B.	b, c $= 4 + 6^{\circ}$ $= 54^{\circ}$
	C. a, b	D.	a + c, b + c
181.	The quadratic equation whose roots are $1 - \sqrt{2}$ and 1	+ √2	is $N = -\frac{b \pm \sqrt{1}}{2\alpha}$
	A. $x^2 + 2x + 1 = 0$	B.	$x^2 - 2x + 1 = 0$ $= \frac{2 + 8}{6}$
نہ ز	C. $-x^2 + 2x - 1 = 0$	D.	$x^2 - 2x - 1 = 0 = \frac{2+8}{6}$
182.	If $XY = 12$, $YZ = 20$ and $XZ = 15$, then XYZ is equal	l to	-5
	A. 30	B.	48
	C. 45	D.	$(\frac{5}{3})^3 - 1^3$
Paper	Code : D-01 / Set-D [28]		Entrance Examination - 2020

							USX	-8+
183.	Th	e sum of <i>n</i> n	atural numbers is				91X 1365	
	A.	$\frac{n}{2}(n+1)$			B.	$\frac{n^2}{2}$		
	C.	(<i>n</i> + 2)			D.	$\frac{1}{2}(n+1)$		
184.	The	e sum of thre	ee numbers in A.P.	is 27 and their pro	oduct i	s 504, then	the numbers	are:
	Α.	3, 8, 14			B.	5, 8, 14		
	C.	4, 7, 14			D.	4, 9, 14		3 - 1 = 2 3 - 1 = 5 9 - 1 = 8
185.	The	sum of 30	terms of an A.P. w	hose n th term is 3 <i>n</i>	i - 1 is			9-1=8
	Α.	1360		L.	₽ .	1365	a=	$q = 1^{-1}$ 2, d = 3, n = $= 2^{+1} 2^{2n+1(n-1)}$ $= 15 [++8^{-1}]$ the height of
	C.	1370			D.	1375	Sn	= 24+2 2441
186.	The	angleofele	evation of the sun v	when the length of t	he sha	dow of a po	ole is equal to	$= 15$ (\cdot
		pole is			ine she		ore is equal to	= 15×9
	A.	$\frac{\pi}{2}$			В.	$\frac{\pi}{3}$		- 36
	C.	$\frac{\pi}{4}$			D.	$\frac{\pi}{6}$	12	14 f 36 X
187.	Inter	rcepts on x-	axis and y-axis of	two lines L ₁ and	L ₂ are	e (a,b) ar	nd (b, a) resp	ectively. The
			between two line		av.	=//		
	A.	$\frac{2ab}{a^2-b^2}$			В.	1		
	C.	$\frac{a^2-b^2}{2ab}$			D.	None of t	hese	
188.	ABC	is a triangle	e and D is mid poir	nt of BC. If coordin	nates	of A, B, C a	are (1, 2), (-1	, 3) and (3, –5)

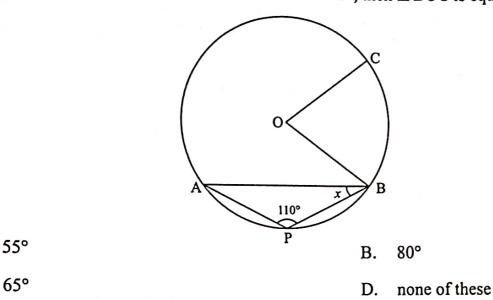
188. ABC is a triangle and D is mid point of BC. If coordinates of A, B, C are (1, 2), (-1, 3) and (3, -5) respectively then the coordinates of the point which divides AB is the ratio of 2 : 1 internally will .
be
Number 188. ABC is a triangle and D is mid point of BC. If coordinates of A, B, C are (1, 2), (-1, 3) and (3, -5)

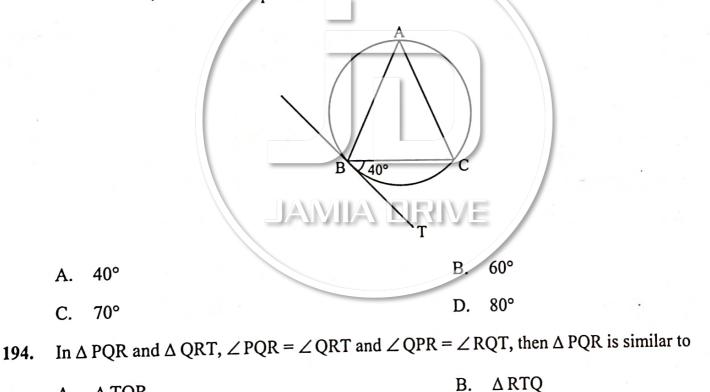

 A. (1, -6) B. (-1, 6) $\underbrace{mul_{L} + uu_{1}}_{mt}$ \underbrace{my}_{mt}

 C. (-1, -6) D. (1, -2)

Paper Code : D-01 / Set-D

[29]


189. In the given figure, $\angle BDA = 90^\circ$, AB = 50 cm, AD = 30 cm, AC = 34 cm, then measure of side BC is


Paper Code : D-01 / Set-D

[30]

In the given figure, O is the centre and $\angle APB = 110^{\circ}$, then $\angle BOC$ is equal to 192.

 \triangle ABC is an isosceles triangle inscribed in a circle with AB = AC and BT is tangent at B and 193. \angle CBT 1 40°, then \angle C is equal to

∆ RQT D. ΔQRT C.

Right angle \triangle ABC is right angle at B and \angle CAB = 30°. The perpendiculars drawn at AB and AC 195. meet at point B. Angle formed at O will be equal to

- _B. 45° 60° Α. D. none of these
- 30° C.

Entrance Examination - 2020

Paper Code : D-01 / Set-D

∆ TQR

Α.

A.

C.

31 1

196.	In	In A ABC, AD is the perpendicular which meets BC at D. Then			
		$BC^2 + CD^2 = AB^2 + AC^2$		$AB^2 + CD^2 = AC^2 + BD^2$	
	С.	$BD^2 + CD^2 = AB^2 + BC^2$	_D.	$AB^2 + AD^2 = CD^2 + BD^2$	
197.	Th	The volume of the biggest possible cone cut from the cube that of side 12 cm is			
		$144 \pi \mathrm{cm}^3$		$432 \pi \text{ cm}^3$	
	C.	$114 \pi \mathrm{cm}^3$	D.	$532 \pi \mathrm{cm}^3$	
198.	The volume of the greatest cube that can be cut out from the sphere of radius 5 cm is				
24 -	Α.	$121\sqrt{2} \text{ cm}^3$	В.	$125\sqrt{2}$ cm ³	
	C.	$\frac{250}{\sqrt{2}} \text{ cm}^3$	D.	$\frac{1000}{3\sqrt{3}} \text{ cm}^3$	
199.	The brass cube whose height is 9 metric tone is melted and recasted into the 25 m long square				
	shaped rod. Then a complete cube is cut from this rod. Then the weight of the cube is				
	А.	42 Kg	В.	52 Kg	
	C.	62 Kg	D.	72 Kg	
200.	If the	If the height and diagonal of a volumetric solid are 12 cm and 17 cm respectively and base area is			
	72 cm ² then its surface area will be VIA DRIVE				
2 m	A.	276 cm ²	B.	204 cm ²	
	С.	408 cm ²	D.	552 cm^2	

1 32]