

- The general solution of (y-z) p + (z-x) q = x y is: ı.
 - (a) $\phi(x+y+z, x^2+y^2+z^2)=0$
- (b) $\phi(xyz, x+y+z)=0$
- (c) $\phi(xyz, x^2+y^2+z^2)=0$
- (d) $\phi(x^2-y^2-z^2, x-y-z)=0$
- If A and B are two odd order skew-symmetric matrices such that AB = BA, then the matrix AB is 2.
 - (a) an identity matrix

- (b) an orthogonal matrix
- (c) a skew-symmetric matrix
- (d) a symmetric matrix
- Pair of tangents drawn to the conic $\alpha x^2 + \beta y^2 = 1$ so as always parallel to conjugate diameters of 3. the conic $ax^2 + 2hxy + by^2 = 1$. The points of intersection of such tangents lie on the curve
 - (a) $ax^2 + 2hxy + by^2 = \frac{ab}{aB}$
- (b) $\alpha x^2 + \beta y^2 = \frac{\alpha}{a} + \frac{\beta}{b}$
- (c) $ax^2 + 2hxy + by^2 = \frac{a}{b} + \frac{a}{6}$
- (d) $ax^2 + 2hxy + by^2 = \frac{a}{a} + \frac{b}{a}$
- Let V be a 3-dimensional vector space with A and B its subspaces of dimensions 2 and 1 respectively. If $A \cap B = \{0\}$, then
 - (a) V = A B

(b) $V = A \cdot B$

(c) V = A + B

(d) None of these

WwW.nOTESmYfOoT.cOM

- If $A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$ satisfies the matrix equation $A^2 kA + 2I = 0$, then the value of k is: 5.
 - (a) 0

(b) 1

(c) 2

- (d) 3
- The solution of $\frac{dx}{x^2-y^2-z^2} = \frac{dy}{2xy} = \frac{dz}{2xz}$ is given by 6.
 - (a) $\frac{y}{z} = c_1$, $\left(\frac{x^2 + y^2 z^2}{z^2}\right) = c_2$
- (b) $\frac{y}{z} = c_1$, $\left(\frac{z^2 y^2 z^2}{2}\right) = c_2$
- (c) $\frac{y}{z} = c_1$, $\left(\frac{x^2 + y^2 + z^2}{z}\right) = c_7$
- (d) $\frac{y}{z} = c_1$, $(x^2 + y^2 + z^2) = c_2$
- Which of the following is not true? 7.
 - line parallel to a given line and passing through a curve.
 - (a) Cylinder is a surface generated by a (b) Cylinder is a surface generated by a line parallel to a given line and always at constant distance from given line.
 - (c) Right circular cone is surface generated (d) Only (a) and (c) options are correct. by a line through a fixed point and making a constant angle from the axis.
- An integrating factor for $(\cos y.\sin 2x)dx + (\cos^2 y \cos^2 x)dy = 0$ is 8.
 - (a) $sec^2y + secy tany$

(b) $tan^2y + secy tany$

(c) $\frac{1}{\sec^2 y + \sec y + \tan y}$

- (d) imply to secu tany
- Let T be a linear operator on $1R^3$ defined by T(x, y, z) = (2x, x y, 5x + 4y + z). Then T^{-1} is 9.
 - (a) $\left(\frac{x}{2}, \frac{x-2y}{2}, \frac{-9x+8y+2z}{2}\right)$

(b) $\left(\frac{3x}{2}, \frac{2x-y}{2}, \frac{-9x+8y+z}{2}\right)$

(c) $\left(\frac{5x}{2}, \frac{2x-y}{2}, \frac{-9x+8y+2z}{2}\right)$

(d) $\left(\frac{x}{2}, \frac{2y-x}{2}, \frac{9x+8y+2z}{2}\right)$

10. The general solution of
$$y = 2x \frac{dy}{dx} + y \left(\frac{dy}{dx}\right)^2$$
 is

(a)
$$2xc - y + c^2 = 0$$

(b)
$$2x^2c - y + c^2 = 0$$

(c)
$$2xc - y^2 + c^2 = 0$$

(d)
$$2x^2c - y^2 + c^2 = 0$$

11. The equation of the cone, reciprocal to the cone
$$x^2 + 2y^2 + 3z^2 = 0$$
 is

(a)
$$x^2 + 2y^2 + 3z^2 = 0$$

(b)
$$2x^2 + 3y^2 + 6z^2 = 0$$

(c)
$$x^2 + y^2 + z^2 = 0$$

(d)
$$6x^2 + 3y^2 + 2z^2 = 0$$

(b)
$$\pm \frac{1}{\sqrt{3}}$$
, $\pm \frac{2}{\sqrt{3}}$, $\pm \sqrt{3}$

(c)
$$\pm \frac{1}{\sqrt{3}}$$
, $\pm \frac{1}{\sqrt{3}}$, $\pm \frac{1}{\sqrt{3}}$

(d)
$$\pm \sqrt{3}$$
, $\pm \frac{\sqrt{3}}{2}$, $\pm \frac{1}{\sqrt{3}}$

13. Let
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 defined by $T(x, y) = (-x - y, 3x + 8y, 9x - 11y)$. Then the rank and nullity are respectively

14. If PSP' and QSQ' be two perpendicular focal chords of a conic given by
$$y^2=4x$$
 then $\frac{1}{SP \cdot SP} + \frac{1}{SQ}$ equals

(a)
$$\frac{1}{2}$$

15. The equation of axis of the conic
$$\sqrt{(ax)} + \sqrt{(by)} = 1$$
 is

(a)
$$a(b^2 + a^2)x - b(a^2 + b^2)y + (b^2 - a^2) = 0$$
 (b) $b(a^2 + b^2)x + a(b^2 + a^2)y - ab = 0$

(b)
$$b(a^2 + b^2)x + a(b^2 + a^2)y - ab = 0$$

(c)
$$\frac{ax}{a^2+b^2} + \frac{by}{a^2+b^2} = 1$$

16. If the Trapezoidal rule with interval [0,1] is exact for approximating the integral
$$\int_0^1 (x^3 - cx^2) dx$$
 then the value of 'c' is equal to

$$(b) 3$$

If S is the set of all real numbers except -1 and * is an operation defined by a*b = a + b + ab, the inverse of 2*3 is

(a)
$$-\frac{2}{3}$$

(b)
$$-\frac{6}{7}$$

(a)
$$-\frac{2}{3}$$
 NOTESMYFOOT.COM (b) $-\frac{6}{7}$ (c) $-\frac{3}{4}$ WWW.nOTESMYFOOT.COM (d) $-\frac{11}{12}$

(d)
$$-\frac{11}{12}$$

18. Equation of the cone with vertex at origin and direction cosines of generators satisfying the rel
$$\frac{1}{l^2 + 2m^2 - 3n^2} = 0$$
 is given by

(a)
$$x^2 + 2y^2 - 3z^2 = \sqrt{1^2 + 2^2 + 3^2}$$

(b)
$$x^2 + 2y^2 - 3z^2 = xy - 6yz - 3zx$$

(c)
$$x^2 + 2y^2 - 3z^2 = 0$$

19.	Let $f(x,y,z) = e^{\sqrt{z-x^2-y^2}}$. Then the range	ge of f is:	
	(a) (1,∞)	(b) [1,∞)	
	(c) [1, ∞]	(d) (1,∞]	
20.		such that $O(a)=4$, $O(b)=2$ and $a^3b=ba$. Then $O(ab)$ is	
20.		(b) 4	
	(a) 2 (c) 8	(d) 6	
		= [1, 2] × [0, \(\pi\) is	
21.	The value of $\iint_R y \sin(ny) dA$, where R:	ווי בן יי ניי, אן ווי	
	(a) 0	(b) $-\frac{1}{2}$	
	(c) 1	(d) None of these	
22	The volume of the solid in the first octant	bounded by the cylinder $z = 9 - y^2$ and the plane $x = 2$	is
22.	(a) 36	(b) 9	
	(c) 18	(d) 27	
	\	e paraboloid $z = x^2 + y^2$ above the xy-plane, and inside	the
23.	cylinder $x^2 + y^2 = 2x$ is	,	
		(b) 3π	
	(a) $\frac{n}{2}$	The figure of the second of the second	
	(c) $\frac{3\pi}{2}$	(d) π	
24.	Consider the series $x_{-1} = \frac{x_n}{1 + \frac{9}{1 + \frac{1}{1 + \frac{1}{1$	e = 0.5 obtained from the Newton-Raphson method.	T
24.			
	series converges to	(b) √2	
	(a) 1.5	(d) 1.4	
	(c) 1.6	• •	
25.	$\lim_{(x,y)\to(0,0)} f(x,y) \text{ where } f(x,y) = \tan^{-1}$	$\frac{1}{x^2+y^2}$ is	
		(b) π/2	
	(a) 1	(d) does not exist	
	(c) 0		
26.	The value of $(y^2dx + x^2dy)$; where	e c is the triangle given by $x = 0$, $x + y = 1$, $y = 0$ is	**
		(b) -1	
	(a) 1	(d) [†] 0	
	(c) ½	$a_{x} = 0 a \neq 1 \text{ is}$	
27.	The solution of the linear difference equ	$y_{k+1} \cdot ay_k = 0, a + 1.5$	
	(a) $y_k = ak$	(b) $y_k = ca^k$	
	(c) $y = ca^k$	(d) $y_{k-1} = ca^{k+1}$	
	(c) y - ca		
	•		

28. The general solution of the differential equation: $(D^2 - a^2)^3 y = e^{ax}$, where $D = \frac{d}{dx}$ is

(a)
$$(c_1 + c_2 x)e^{\alpha x} + (c_3 + c_4 x)e^{-\alpha x} + \frac{x^3 e^{\alpha x}}{6 \sqcup \alpha^3}$$

(b)
$$(c_1 + c_2 x + c_3 x^2)e^{ax} + (c_4 + c_5 x + c_6 x^2)e^{-ax} + \frac{x^3 e^{ax}}{8 \ln a^3}$$

(c)
$$(c_1 + c_2x + c_3x^2)e^{ax} + (c_4 + c_5x + c_6x^2)e^{-ax} + \frac{x^2e^{ax}}{8 \cdot \frac{1}{2}a^2}$$

(d)
$$(c_1 + c_2x + c_3x^2)e^{ax} + (c_4 + c_5x + c_6x^2)e^{-ax} + \frac{xe^{ax}}{8a}$$

29. The shortest distance from the point (1, 0, -2) to the plane x + 2y + z = 4 is

(a)
$$\frac{5\sqrt{6}}{6}$$

(b)
$$\frac{5}{6}$$

(c)
$$\frac{\sqrt{6}}{6}$$

30. Let f(x) be continuous whose values are known at -2, -1, 1 and 2. If the Lagrange's interpretable formula $f(x) = L_1 f(-2) + L_2 f(-1) + L_3 f(1) + L_4 f(2)$ is used to approximate f(0), then L₃ is

(c)
$$\frac{2}{3}$$

(d)
$$\frac{4}{3}$$

31. In the analysis of data of a randomized block design with 5 blocks and 4 treatments, the degrees of freedom is:

- (a) 12
- (c) 16

- (b) 15
- (d) 20

32. The following hPP

Maximize $z = x_1 + x_2$ Sub to $x_1 + x_2 \le 1$ $-3x_1 + x_2 \ge 3$ $x_1, x_2 \ge 0$

(a) has a feasible solution

- (b) has an optimal solution
- (c) has basic solution $(x_1 = -1, x_2 = 2)$
- (d) is infeasible

33. If $x \ge 1$ is the critical region for testing $H_0: \theta = 2$ against $H_1: \theta = 1$, on the basis of observation from the population:

$$f(x;\theta) = \theta e^{-\theta x}, x \ge 0$$

then the value of the level of significance is

(a) $\frac{1}{e}$

(b) $\frac{1}{e^2}$

(c) 1/€

(d) 1+e

34. The standard deviation of sample means is called

(a) sampling error

(b) mean square error

(c) standard error

(d) non sampling error

35.	If x has an exponential distribution with mea	in 3, then the variance of the random variable x is				
	(a) 1.5 (c) 6	(b) 3 (d) 9				
36.	Consider a lot consisting of 20 defective and 80 non defective items. Two items are drawn at random without replacement. What is the probability that both items are defective?					
	(a) $\frac{1}{495}$	(b) $\frac{11}{495}$				
	(c) $\frac{19}{495}$	(d) $\frac{1}{4}$				
37.	Suppose that the random variable x has possible values 1,2,3, and $P(x = j) = \frac{1}{2^j}$, $j = 1,2,3,$ then P(x is even) is equal to					
	(a) $\frac{1}{3}$	(b) $\frac{2}{3}$ (d) $\frac{1}{2}$				
	(c) 1	(d) $\frac{1}{2}$				
38.	Coefficient of correlation is equal to					
	(a) A.M. of two regression coefficients	(b) H.M. of two regression coefficients				
	(c) G.M. of two regression coefficients	(d) None of these				
39.	If X has the discrete uniform distribution w distribution is	ith pmf $f(x) = \frac{1}{8}$ for $x = 1, 2,, 8$, then the mean of the				
	(a) 4	(b) 4.5				
	(c) 8	(d) 9				
40.	If $P(X = 0) = 1 - P(X = 1)$, and $E(X) = 3V$					
	(a) 1	(b) 0				
	(c) $\frac{2}{3}$	(d) $\frac{1}{3}$				
41.	If X is a discrete random variable taking per then the distribution of X is	ositive integer values and possess memory-less property.				
	(a) Binomial distribution	(b) Poisson distribution				
	(c) Geometric distribution	(d) Hyper-geometric distribution				
42.	If $X \sim N(\mu, \sigma^2)$, then $Z^2 = \left(\frac{X - \mu}{\sigma}\right)^2$ is a C	hi-square variate with				
	(a) 1 degrees of freedom	(b) 2 degrees of freedom(d) n degrees of freedom				
	(c) 3 degrees of freedom	(d) In degrees to the standard deviation of differences				
43.	The mean difference between 9 paired obs	servations is 15, and the standard deviation of differences				
	(a) 27	(b) 9 (b) 9				
	(c) 3	(u) V				
44.	Sum of the deviation about means is	(b) minimum				
•	(a) zero	. 1)				
	(c) maximum	(d) one P.T.O.				
	NOTES	6 BMY FOOT.COM				
	Ţ	VWW.nOTESMYfOoT.cOM				

						•
45.	The sta	ndard deviation of value of standard	a set of 50 ob deviation will	servations i be	s 8	3. If each observation is multiplied by 2,
	(a) 4			(b)	8	R
		16		(d)		none of the above
46.	The sta	ndard deviation of	first n natural	number is		
		$\sqrt{\frac{(n^2-1)}{6}}$		(b)	,	$\sqrt{\frac{(n^2+1)}{6}}$
	(c)	$\sqrt{\frac{(n^2-1)}{12}}$		(d)		$\sqrt{\frac{(n^2+1)}{12}}$
47.	Let f	$(x) = \frac{x^2}{18}, -3 < x < 3$	3, zero elsewh	ere, be the	pdi	f of X, then $P(x < 1)$ is
	(a)					
	(c)	1		(d))	$\frac{1}{2}$
48.	The p	oints of inflexion of	a normal dist	ribution wit	h r	mean μ and variance ਰੰ are
	(a)	$\mu \pm \sigma$		(b))	μ±2σ
		$\mu \pm 3\sigma$				$\mu \pm 4\sigma$
49.			-			stic under study, $Q = 1 - P$ and n is the sar proportion is equal to
	(a)	n P Q		(ъ)	PQ n
	(c)	\sqrt{nPQ}		(d	1)	$\sqrt{\frac{PQ}{n}}$
50.	Let N(μ,	X_1, X_2, X_n are σ^2). Which of the i	independent	ly and iden	tic hes	cally distributed random variables and follows under Ho?
	(a)	$\mu = \mu_0$, σ^2 know	n	(1	b)	$\mu = \mu_0$, σ^2 unknown
		$\mu \ge \mu_0$, σ^2 know		(d)	$\mu \ge \mu_0$, σ^2 unknown
51.	Two	bodies of mass $0\hat{i} + 35\hat{j} - 3\hat{k}$ cm	100g and 29	y. What is	th	ing with velocities $(2\hat{\imath} - 7\hat{\jmath} + 3\hat{k})$ cm/s the velocity of centre of mass of this two
	(a)	2k cm/s		(b)	(10i + 9j - 4k) cm/s
	(c)	$(4\hat{\imath} - 5\hat{\jmath})$ cm/s		,	•	3ĵ cm/s
52	The	kinetic energy of a	body is twice	its rest ma	iss	energy. What is the ratio of relativistic ma

rest mass of the body?

(a) $\sqrt{3}$

(b) 9

(c) 2

(d) 3

53. Which of the following potentials does not satisfy Laplace's equation?

(a) $x^2 + 5y^2 - 6z^2$ (c) $x - y^2 + z^2$

(b) 2y + 7(d) $2x^2 - 4y^2 + z^2$

- 54. An inductive coil having a resistance of 5Ω and an inductance of 5mH is connected in series with $2\mu F$ capacitor. The value of Q factor of the coil is
 - (a) zero

(b) 1

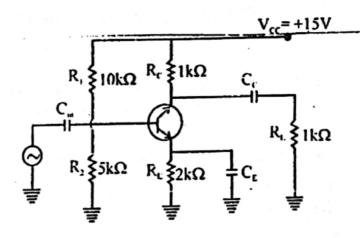
(c) 10

- (d) ∞
- 55. A sinusoidal voltage with peak value $40\sqrt{58}$ V and frequency $\frac{200}{\pi}$ Hz, is applied to a series LCR circuit in which R = 2 Ω , L = 25 mH and C = 500 μ F. What would be the power dissipated in this circuit?
 - (a) 60√58 W

(b) 260√29 W

(c) 2150 W

- (d) 3200 W
- 56. The state of polarization of light with the electric field vector $\vec{E} = \hat{\imath}E_0 \cos(kz wt) \hat{\jmath}E_0 \cos(kz wt)$ is
 - . (a) Linearly polarized at -45° to x-axis
- (b) Linearly polarized at +60° to y-axis
- (c) Left circularly polarized
- (d) Elliptically polarized with the major axis along x-axis
- 57. A diffraction grating has 5000 rulings per cm. What is the second order diffraction angle for violet light? (Given λ_{violet} = 500 nm)
 - (a) 30°


(b) 45°

(c) 60°

(d) 90°

WWW.nOTESMYfOot.cOM

58. For the given circuit, if $V_{BE} = 0.7 \text{ V}$, then the operating point (Q) would be:

(a) 2.15V, 8.55 mA

(b) 12.0 V, 2.15 mA

(c) 8.55 V, 2.15 mA

- (d) 8.55V, 12.0 mA
- 59. For a RC phase-shift oscillator consisting of three RC phase shift networks, if v_i and v_o represents the input and output voltage of these RC network, then the ratio of v_i to v_i to provide sustained oscillation would be
 - (a) 29

(b) -29

(c) $-\frac{1}{29}$

(d) $\frac{1}{29}$

6C. The Laurent's series of the function $f(z) = \frac{e^2z}{(z-1)^2}$ at z=1 is

(a)
$$\frac{e^2}{(z-1)^3} + \frac{2e^2}{(z-1)} + \frac{2e^2}{(z-1)} + \frac{2}{3} + \frac{2e^2}{3}(z-1) + \cdots$$

(b)
$$\frac{e^2}{(z-1)^3} + \frac{2e^2}{(z-1)} + \frac{1}{3} + \frac{2e^2}{3}(z-1) + \cdots$$

(c)
$$\frac{e^2}{(z-1)^3} + \frac{1}{3} + \frac{2e^2}{3}(z-1) + \cdots$$

(d)
$$\frac{e^2}{(z-1)^3} + \frac{2e^2}{(z-1)^2} + \frac{2e^2}{(z-1)} + \frac{4}{3} + \frac{2e^2}{3}(x-1) + \cdots$$

61. The Laguerre polynomial L_n(0) is equal to

(a) 0

(b) -1

(c) I

(d) 2

62. Half-life of a radioactive material is 4 days. After 20 days, the fraction left undecayed will be:

(a) $\frac{1}{16}$

(b) $\frac{1}{32}$

(c) $\frac{1}{20}$

(d) $\frac{1}{80}$

63. Two coherent sources, whose intensity ratio is 36: 1, produce interference fringes. What is the of maximum intensity and minimum intensity of the interference pattern?

(a) 49.25

(b) 6:1

(c) 4:1

(d) 25:4

64. A light source of wavelength λ illuminates a metal and ejects photoelectrons with a maxikinetic energy of 1.00eV. A second light source, with half the wavelength of the first, a photoelectrons with a maximum kinetic energy of 4.00 eV. What is the work function of the m

(a) 1 eV

(b) 2 eV

(c) 3 eV

(d) 4 eV

65. If $f(x,y) = xy^2$, then the directional derivative of f(x,y) in the direction $2\hat{i} + \hat{j}$ at point (2,3) is

(a) √5

(b) $\frac{10}{\sqrt{5}}$

(c) ²⁰√5

(d) $\frac{30}{\sqrt{5}}$.

66. A transistor has the following typical values of its h parameters: $h_{fc} = 330$, $h_{ic} = 4.5 \text{ k}\Omega$, $h_{rc} = 2.5 \text{ k}\Omega$ and $h_{rc} = 2.5 \text{ k}\Omega$. What would be the value of the cualing ain?

(a) 300

(b) 250

(c) 200

(d) 150

67. If the power factor changes from $\frac{1}{2}$ to $\frac{1}{4}$, then what would be the increase in impedance in circuit?

(a) 25%

(b) 50%

(c) 200%

(d) 100%

SMY**FOOT** CON

	Total conservative force field P which of the fol	lowing is always true?
		(b) $\vec{\nabla} \times \vec{F} \neq 0$
	(c) $\vec{\nabla} \cdot \vec{F} = 0$	(d) $\vec{\nabla} \cdot \vec{F} \neq 0$
69.		tion is 300 μ A. If the transistor is now connected in cent? (Given value of $\beta = 120$).
	(a) 2.4 μA	(b) 119.0 μA
	(c) 238.0 μA	(d) 300.0 μA
70.	Which one of the following is one of the values	of i' (i raised to the power f)?
	(a) $2\pi i$	(b) $\pi + l$
	(c) $e^{-\frac{\pi}{2}}$	(d) 0.79
71.	E R modeling technique is a	
	(a) top-down approach	(b) bottom-up approach
	(c) ieft-right approach	(d) right-left approach
72.	Output of the following c-code main ()	
	print f("Helio"); [main():	
	(a) 11cllo – one time	(b) Hello – infinite times
	(c) Compile time error	(d) Run-time error
73.	Which of the following algorithms solves the	all-pair shortest path problem?
,	(a) Dijkstra's Algorithm	(b) Floyd's Algorithm
	(c) Prim's Algorithm	(d) Warshall's Algorithm
74.	Control of the state	
	(a) Time attributed to kernel, when in executes on the behalf of the process	t (b) Time attributed to user instruction
	(c) Time taken to feed program in the System	(d) None of the above
75.	Predict the output of below program:	
	#include <stdio.h></stdio.h>	•
	int main ()	
	int arr[5]:	ess of arr is 2000 and size of integer // is 32 bit
	arr++:	
	printf(:'%u'', arr);	
	return 0;	
	}	
	(a) 2002	(b) 2004
	(c) 2020 NOTESMYFOOT.COM	(d) value required
	Www.notesmyfoot.com	10

P.T.O

Scanned with CamScanner

76.			ence of operation is p		
	pus/ valu	n(1), push(2), p es are :	pop, push(1), push(2), pop,pop,p	pop,push(2),pop. The sequence of poppe
	(a)	2,2,1,2,2		(b)	2,1,2,1,2
	(c)	2,2,1,1,2	,	(d)	2,1,1,2,2
77.	Cons	ider the follow	ing terms		
		(1)	EDGE		
		(2) (3) (4)	Universal Mobile FHSS		
	Whic		Evolved High Spo	n systems of	iven above is/are belong to GSM family?
	(a)	l and 3	·		
	(c)	1, 2 and 4			only 2
				(d)	1, 3 and 4
78.	What		X in the following		
		(111)	$(111)_2 + (4543)_8 = (X$)16	
	(a)	9A2	- 2" ' '	(b)	9B2
	(c)	2A9	·	(d)	2B9
79.	Physi	cal topology of	f FDDI is:		1
	(a)	Bus		(b)	Ding
	(c)	Star		(d)	Ring None of the above
					Holic of the above
80.	Whic		llowing is correct sta		
. ,	(a)	Von-Neuman sequential con	n Computers are nputers	only (b)	Von-Neumann Computers are sto program computers
	(c)	Von-Neuman different me instructions	n Computers emories for data		Von-Neumann Computers are sequer stored program computers and have a memory for data and instructions.
81.	Whic	h of the follow	ing system call is us	ed to create	new process in UNIX operating system?
	(a)	init()		(b)	stime()
	(c)	fork()		(d)	wait()
82.	The	ninimum numb	er of nodes in an A	VL tree of he	eight 6 is
	(a)	12		(b)	16
	(c)	20		(d)	32
83.	What		m number of edges	a directed g	graph having n vertices can have including
	(a)	n*n		(b)	n*(n-1)
	(c)	n ⁿ	•	(d)	n ⁿ⁻¹
84.	4. The Banker's theorem is associated with which of the following concept?				
	(a)	Mutual Exclu		(b)	Paging •
	(c)	Segmentation		(d)	Deadlock
	(3)	,		11	F.

0.6	What	is doored of a water 120 of an undirect			
85.		is degree of a vertex 'V' of an undirected			
		number of immediate neighbour vertices of 'V'			
	(c)	number of vertices which can be reached from 'V'	(d)	nom . A.	
86.	Which	n one of the following statements is true i	egard	ing Array and Linked List?	M653/5
	(3)	Elements of Array are not stored in adjacent memory locations while for Linked List, elements are stored in adjacent memory locations	(b)	Elements of Array are stored in memory locations while for Lin elements are not stored in adjacent locations	ked List.
	(c)	For Array and Linkey List both, elements are not stored in adjacent memory locations	(a)	For Array and Linked List both, el- stored in adjacent memory locations	ements are
87.	In SQ	L, which command can remove specific	row f	rom a table	4.5
	(a)	Truncate	(b)	Remove	
	(c)	Cut	(d)	Delete	
88.	Malic	ious software is known as		75	5.48
66.			(b)	malware	
	-	badware maliciousware	(d)	67 (eq.	#4.
	(-,		, ,		
89.		void the race condition, the number of section is:	f proc	esses that may be simultaneously	Insue Las
	(a)	8	(b)	1	50.00
	(c)	16	(d)	0	\$
00		h access method is used to obtain a reco	rd fro	m a cassette tape?	
90.		Direct		Sequential	
		Randoni	(d)	All of the above	200
			a abau	y foreign movies	
91.	India	n Cinema Halls should not be allowed to	o snov	v Ioleign movies.	
		Assumption:			
		 Foreign movies are responsible 	le for	falling moral values.	ž.
		IL Indian movies are responsible	for fa	alling moral values.	\$
	(a)	Only Assumption I is implicit	(b	Only Assumption II is implicit	
		Tisher Lea II is implicit	(d) Neither I nor II is implicit	٧.
			e first	walked for 3 km towards West, t	hen she turned
92 .	Renu	ika started walking from her house. Sh rds North and moved 4 km in that direc	tion. I	low far Renuka is from her house?	• •
			(t	o) 3 km North	
	(a)	3 km South	14	() 5 km North West	
	(c)	5 km South West	. ·	A South-East of Y and M is to the	North of L in
93.	X is	to the South-West of Y, L is to East of with XY. In which direction of Y is M	locate		
	(a)		(1	b) South-West	
	(c)		(d) North-East	P.T.O
	(0)	North NOTESMYFOOT.COM WWW.nOTESMYFOOT.cOM	12	•	

74.	Cito	ese ar stateet atternative mat will constitute	m	same pattern
		98, 90, 82, 7	١, _	58
	(a)	**		65
	(c)	68	d)	60
95.	Find	the next number in the series		
		2, 9, 28,	65	· minimum
	(n)	125	b)	126
	(c)	85	ď)	95
96.	The	missing number in the series 40, 120, 60, 180), 5	00,, 135 is :
	(a)	110	b)	270
	(c)	105	d)	210
97.	The r	relationship between the standardized and no	n-:	standardized regression coefficients is:
		D 1 10 10 1		$B_{YX} = b_{yx} (S_Y / S_X)$
	(c)	5		$B_{xy} = b_{yx} (S_X / S_Y)$
	with t male	vehicle -I, II and III and each vehicle has been, two doctors and three teachers among the pair of sisters A and F; B a male engineer doctor. Two persons belonging to same progringer and travels in vehicle II. In which vehicle II.	th r, t fes	em. C is a lady doctor and she does not ravels with only G, a teacher in vehicle L ssion do not travel in the same vehicle. A
	(a)	1	b)	II
	(c)		ď)	II and III
99.	If x =	$=+$; $+=-$; $-=\div$ and $\div=x$, then find the sol	uti	on of the following expression:
	,	8 ÷ 2 ×		
	(a)	95	b)	22
	(c)	•		14
100.	Choo	se the correct alternative:		
		7, 15, 32, _	_	, 138, 281
	(a)	64	b)	65
	(c)	66	d)	67