WWW.nOTESMYfOot.cOM

- The resistance of a wire is 5Ω at 50°C and 6Ω at 100°C. The resistance of the wire at 0°C will be:
 - (a) 2Ω

(b) 1 Ω

(c) 4 s 2

- (d) 3Ω
- The greatest length of a copper wire that can hang without breaking would be [Breaking stress = 2. $7.2 \times 10^7 \text{ N/m}^2$; Density of copper = 7.2 g/ce; g = 10 rn/s²]:
 - (a) 10 m

(b) 100 m

(c) 1000 m

- (d) 10,000 m
- A ship of mass 3×107kg which is initially at rest can be pulled through a distance of 3 m by means 3. of a force of 5×104 N. If there is no water resistance, then the speed attained by the ship will be:
 - (a) 0.1 m/s

(b) 1 m/s

(c) 10 m/s

- (d) 0.01 m/s
- Two masses, one 'n' times heavier than the other, have equal kinetic energy. The ratio of their momenta (p2/p1) would be:
 - (a) √n

(c) $n^{3/2}$

- (d) n^2
- Find the value of irms for the variation of current as given below: -5.

(a) $i_{rms} = i_0 / 4$

(b) $l_{rms} = i_0 / 2$ —

(c) $i_{\text{rms}} = 4i_0 / 3$

- (d) $i_{rms} = i_0$
- An inductance coil of 0.50 H and resistance 100 Ω is connected to a 220V, 50 Hz a.c. supply. What 6. is the time lag between the voltage maximum and current maximum?
 - (a) 3.2 ms

(b) 3.0 ms

(c) 1.57 ms

- (d) 2.57 ms
- A nucleus with z = 92 emits the following in a sequence: 7.

$$\alpha$$
, α , β^- , β^- , α , α , α , α , α , β^- , β^- , α , β^+ , β^+ , α .

The z of the resulting nucleus is:

(a) 76

(c) 82

- (d)
- A potentiometer wire has a length of 5m and resistance of 2 Ω/m. A cell of e.m.f. 5V and a resistance box are connected in series with it. The value of resistance to be introduced in the box so 8. as to get a potential gradient of 0.1 V/m will be
 - (a) 55 Ω

(b) 90 Ω

(c) 115 Ω

(d) 172 Ω

P.T.O.

9.	Bomb calorimeter is used to estimate: (a) calorific value of solid and liquid fuels (c) composition of solid and liquid fuels	els. (b) calorific value of gaseous fuels. (d) composition of gaseous fuels.
10.	The luster of a metal is due to: (a) presence of free electrons (c) its hydraulic washing	(h) its chemical inertness (d) its high density
11.	What chemicals can be used to make a buf (a) CH ₃ COOH + CH ₃ COONa (c) H ₃ PO ₄ + CH ₃ COONa	(b) NH ₄ OH + NH ₄ Cl (d) CH ₃ COOH + NH ₄ Cl
12.	Which of the following is not a greenhous (a) CO ₂ (c) CH ₄	e gas? (b) CO (d) Water
13.	Which of the following is not a disinfecta (a) CaOCl ₂ (c) O ₂	nt? (h) CINH2 (d) Na ₂ CO ₃
14.	Which of the following metal forms a vol (a) Al (c) Au	(b) Pb (d) Mo
15.	Nylon-6 is prepared by the self-polymeri (a) Caprolactam (c) Hexa-methylene diamine	zation of: (b) ω-Amino undecanoic acid (d) Adipic acid
16.	Which of the foilowing functional group (a) — OH	s is of an aldehyde? (b) H $-C = O$
	(c) _E_	(b) $-\overset{H}{\overset{I}{\text{C}}} = 0$ (d) $-\overset{O}{\overset{C}{\text{C}}} - OH$
17.	(a) OH ⁻ and O ² - (c) H ₃ O ⁺ and OH ⁻	(b) H ₂ and H ₃ O ⁺ (d) H ₂ and O ₂
18	 The value of 4 cos12° cos48° cos72° is: (a) cos 36° 	(b) ccs72°

(c) sin36°

(d) sin72°

19. The value of k for which the points (k, 2-2k), (-k+1, 2k) and (-4-k, 6-2k) are collinear is:

(a) any value of k

(b) k = -1 or $k = \frac{1}{2}$

(c) k = 1 or $k = -\frac{1}{2}$

(d) $k = 1 \text{ or } k = \frac{1}{2}$

20.	If $\cos 40^{\circ} - \sin 40^{\circ} = x$, (x < 2), then val	ue of cos80° is	
20.	(a) $x\sqrt{2-x^2}$	(b) 2x	
	(c) $-x\sqrt{2-x^2}$	(d) $x + \sqrt{2 - x^2}$	
	-100.*	ie	
21.	The maximum value of		
	(a) e	(b) =	
	(c) e ²	(b) $\frac{1}{e}$ (d) $\frac{1}{e^2}$	
		••	
22.	Value of $\int_{-3}^{3} \frac{x^2 \sin x}{1+x^4} dx$ is		
	(a) 0	(b) 1	
	(c) 2	(d) 4	
23.	Let $\vec{a} = 2\hat{\imath} + 3\hat{\jmath} - \hat{k}$ and $\vec{b} = \hat{k}$	-2j+3k , then the value of 1 5	r which the rector
	$\bar{c} = \lambda \hat{i} + \hat{j} + (2\lambda - 1)\hat{k}$ is parallel to	the plane containing \vec{a} and \vec{b} is:	
	(a) 1	(b) 0	
	(c) -1	(d) 2	
24.		$x^2 + y^2 + 4x - 4y + 4 = 0$ which	equal intercepts on
	positive quadrant is given by:	(b) $x + y = \sqrt{2}$	
	(a) $x + y = 1$	(d) $x + y = \sqrt{2}$	
	(c) $x + y = \frac{1}{\sqrt{2}}$		
25.	If the percentage error in the edge of	a cube is 1, then the error in its volume	
	(a) 1%	(b) 2%	
	(c) 3%	(d) 4%	
26.	The transmission angle is maximum	when the crank angle with the fixed link is	K 2
	(a) 0°	(b) 90°	
	(c) 45°	(d) 180°	
27.	In free vibrations, the velocity vector	leads the displacement vector by:	
,	(a) π	(b) $\pi/2$	
	(c) π/3	(d) $2\pi/3$	
28.	A slider is moving at 150 mm/s on a	link rotating at 60 rpm, the coriolis comp	onent of acceleration
20.	of the slider will be:		
	(a) 600 π mm/s ²	(b) 600 x ² mu√s ²	
	(c) 300 π mm/s ²	(d) 300 mm/s^2	
29.	The total number of instantaneous c	entres of a mechanism having 8 links is:	
~/.	(a) 14	(b) 28	
	(4) 14	(4) 16	

P.T.O.

30.	A cup is provided in screw jack:	
	(a) to reduce the friction.	(b) to increase load capacity.
	(c) to increase efficiency.	(d) to prevent rotation of load.
31.	Friction at the sleeve of a centrifugal gover	mor makes it:
	(a) more sensitive.	(b) more stable.
	(c) Unstable.	(d) insensitive over a small range of speed.
32.	The condition of isochronism can be realize	
J	(a) Watt governor	(b) Porter governor
	(c) Proell governor	(d) Hartnell governor
33.	The size of the cam depends on:	
<i>JJ</i> .	(a) Pitch circle.	(b) Prime circle.
	(c) Base circle.	(d) Pitch curve.
	A pulley and belt in a belt drive constitute	es a:
34.		(b) sliding pair
		(d) rolling pair
		The following the first of the second of the
35.	For an involute gear system, the sliding v	
	(a) the point of engagement.	(b) the point of disengagement.
	· (c) the pitch point.	(d) depends upon gear ratio.
36.	Annular wheel of an epicyclic gear train have the following number of teeth:	has 80 teeth. If the planet wheel has 16 teeth, the sur
	(a) 72	(b) 64
	(c) 24	(d) 48
	The emissions damning coefficient of a sy	estem with a mass of 1 kg attached to the end of a s
37.	with a stiffness 0.9 N/mm is:	
	(a) 120 N/m/s	(b) 30 N/m/s
	(c) 600 N/m/s	(d) 60 N/m/s
	t summer force is maximu	m when the angle of the crank with the line of stroke it
38.		(b) 90°
	(a) 45°	(d) 180°
	(c) 135°	
39.	A rod of length 'l' and diameter 'd' is	subjected to a tensile force 'P'. Which of the follow
	sufficient to calculate the resulting chan	(b) Shear modulus
	(a) Young's modulus	(d) Both Young's modulus and Poisson's ra
	(c) Poisson's ratio	(d) Both roung since the type of I
40	In an application, the bearing is subj	ected to radial as well as axial loads. The type of r
40.	contact bearing used in this application	is:
	(a) Cylindrical roller bearing	(b) Middle folici ocaring
	(c) Thrust hall bearing	(d) Taper- roller bearing
	(3)	NOTESMY FOOT .COM
	444: .444	5
	. WWW.nOTE	SMY fOOT.cOM

41.	into	deflection of a spring with 20 active coils un two pieces each of 10 active coils and place ystem in mm is:	nder a	a load of 1000 N is 10 mm. The spring is made parallel under the same load. The deflection of
	(z)		(b)	10
	(c)		(d)	2.5
		ne size of the component increases the endu	rance	e limit of the component:
42.				remains same.
	(a) (c)	increases. decreases.	(d)	
	The	included angle between the sides of V-belt	is:	
43.			(b)	40°
	(a)	38°	• •	45°
	(c)	42°	-	
44.	A ba	Il bearing operating at a load of F has 800 pad is doubled to 2F is:	00 ho	ours of life. The life of bearing, in hours, when
		1000	(b)	2000
	(a)		(d)	8000
	(c)	4000		
45.	A sta	tic fluid can have:		the street and zero shear stress.
	(a)	non-zero normal and shear stress.	(b)	negative normal stress and zero shear stress. zero normal stress and non-zero shear stress.
	(c)	positive normal stress and zero shear stress.	(d)	zero normal stress and non-zero shear stress
		property of fluid by virtue of which it offer	rs res	istance to shear is called:
46.	The		(b)	adhesion
	(a)	surface tension	• •	viscosity
	(c)	cohesion	(4)	the during their course of motion
47.	The a	approach referring to the behaviour of income of the legal and the space is:		ual fluid particles during their course of motion
		- ttimete enproach.	(b)	Lagrangian approach.
	(a)	Polar Coordinate approach	(d)	Laminar - Turbulent method.
	(c)	Eulerian approach.		
48.	The	piezometric head in a stationary fluid:	_(L)	remains constant at all points in the fluid.
	(a)	semains constant only on a horizontal plane.	(U)	decreases linearly with depth below a free
	(-)	increases linearly with depth below a free	(d)	surface.
	(c)	enrface.		
v		pipes, laminar flow occurs when Reynolds	s nun	nber is:
49.	For p	oipes, laminar new occurs when	(b	
	(a)	less than 2000	(ď	
	(c)	more than 4000		
		ording to Bernoulli's equation for steady i	deal	fluid flow:
50.	Acco	ording to Delilouit 5 offers are inversely	(b	fluid flow:) the otal energy is constant throughout.
	(a)	the velocity and pressure are inversely		
		proportional.	(d) none of the above.
	(c)	the total energy is constant along a streamline but may vary across streamlines.		
		streamline but may vary across six		P.T.C
		•	6	•

51.	numb	Reynold's number for flow of a fluid in a er when the tube diameter is increased by ng fluid the same, is:	circu 20%	and the fluid velocity is decreased by i
	(a)		(b)	1200
	(c)	1800	(d)	3600
52.	If cro	ess-sectional area is denoted by A and wette depth is:	d pe	rimeter of pipe is denoted by P then Hydra
		A D	(b)	$\sqrt{A \cdot P}$
		A·P		$\sqrt{A \cdot P}$ $\frac{P}{A}$
	(c)	A .	(d)	\overline{A}
53.	1+ ic	r	у ге ::	placing a pipe of diameter 'D' by two e
Y		0.37	(b)	0.42
2.74		0.50	(d)	0.76
				The Company of
54.	In se	eries-pipe applications:	(L)	friction factors are same for each pipe.
	(a)	the head losses through each pipe are added to obtain the total head loss.	(b)	
	(c)	the head loss is same through each pipe.	(d)	none of the above.
55.	Hea	d loss in turbulent flow in a pipe:		e turius
	(ā)	varies directly as velocity.	(b)	
	(c)	·	(d)	depends upon orientation of pipe.
56		nospheric pressure head equals:		grif of services the fitting
56.		2.5 m of water	(b)	0 m of water
	(a)	8 m of water	(d)	10.3 m of water
			a fore	ces to:
57.	Rey	molds number represents the ratio of inertia	(b)) elastic forces.
	(a)		•	surface tension force.
	(c) gravity force.		
58	. The	e total pressure force on a plane area is equi centroid, if:	al to	the area multiplied by the intensity of pressur
	(a		. (b	
	-	c) the area is inclined.	(d	none of the above.
	•	turbo machine becomes more susceptible to	cav	ritation if:
59		C. H. L. Law the warrour pressure.	(t	
		pressure falls below the vapour pressure.pressure becomes very high.		temperature rises above the critical value.
		reaction turbine the function of a draft tube	e is to	0:
C	••		(b) provide salety to the
		be binetic energy to flow energy	. (d) prevent water leakage.
	((c) reconvert the kinetic chargy to have		р.

61.	If 'm' is the jet ratio, the number	r of buckets in a Pelo	ton turbine are given by:
	(a) 0.5 m	(b)	10+ 0.5 m
	(c) 15 + 0.5 m	(d)	20 + 0.5 m
62.	In a double acting reciprocating speed N (rpm), the discharge is	pump of cross section	onal area of piston A, stroke length L and crank
	(a) $\frac{ALN}{60}$	(p)	ALN 120
	$(c) \frac{2ALN}{60}$	(d)	3ALN 60
63.	A hydraulic ram acts like a:		
	(a) a centrifugal pump.	(b)	a rotary pump.
	(c) a reciprocating pump.	(d)	an impulse pump.
64.	Kelvin Planck's law deals with	:	
	(a) conservation of energy.	(p)	
	(c) conservation of mass.	(d)	conversion of heat into work.
65.	: I uf the fluid is	800 kJ. During the co of work on the fluid.	ile being stirred by a paddle wheel. Initially, the soling process, the fluid loses 500 kJ of heat, and The final internal energy of the fluid, neglecting
	(a) 410 kJ	(Ъ	
	(c) 800 kJ	(d) 1200 kJ
66.	In a reversible adiabatic proce	ess the ratio $\left(\frac{T_1}{T_2}\right)$ is ex	qual to
	(a) $\left(\frac{P_1}{P_2}\right)^{\frac{\gamma-1}{\gamma}}$ (c) $(V_1V_2)^{\frac{\gamma-1}{2\gamma}}$		$0) \left(\frac{V_1}{V_2}\right)^{\frac{\gamma-1}{\gamma}}$
	(c) $(V_1V_2)^{\frac{\gamma-1}{2\gamma}}$		$\text{i)} \left(\frac{v_2}{v_1}\right)^{\gamma}$
67.	An engine receives 15152 J/s	of heat and produce	s 5 kW of power. The efficiency of the engine is:
	(a) 25%	(1	b) 27.5%
	(c) 30%	(d) 33 %
68.	Which of the following is an	irreversible process	7
00.	(a) An isothermal process.		b) An isentropic process.
			(d) An isenthalpic process.
	With increase in pressure, the	e latent heat of steam	n:
69.		V 14101111 111111 1111111111111111111111	(b) increases.
	(a) does not change.		(d) remains unpredictable.
	(c) decreases.		• •
70	The radiation heat transfer b	etween two surfaces	can be reduced by:
70.		closer.	(h) introducing table
			(d) roughening the surfaces.
	(c) polishing the surfaces	•	~ ·
		,	P.T
		8)

71.	Gases	s have poor:		
	(a)	Transmissivity	(b)	Absorptivity
	(c)	Reflectivity	(d)	Emissivity
72.	Air is		work	equal to 16 kJ upon it. The change in inter
	(a)	-16 kJ	(b)	zero .
	(c)	16 kJ	(d)	32 kJ
73.	The r	elation $\nabla^2 T = 0$ is referred to as:		••
	(a)			Laplace equation.
	(c)	Poisson equation.	(d)	Euler equation.
74.		imagine a curve within a fluid, the tange elocity of the fluid particle, then the curve		every point of which indicates the direction own as a:
	(a)	Boundary layer	(b)	Stream line
	(c)	Streak line	(d)	Laminar curve
75.	Carbu	aretor is mainly employed in:		
	(a)	SI engine	(b)	
	(c)	Gas engine	(b)	None of the above
76.	Iso-o	ctane has:	. 4	
	(a)	Straight chain structure with 8 carbon atoms.	(b)	Ring chain structure with 8 carbon atoms.
	(c)	Branched chain structure with 8 carbon atoms.	(d)	None of the above.
77.	For S	I engines, most preferred fuels are:		
	(a)	Aromatics	(b)	Paraffins
	(c)	Olefins	(d)	Naphthenes
78.	Mors	e test is applicable only to:		•
	(a)		(b)	single cylinder CI engines.
	(c)	multi cylinder CI engines.	(d)	single and multi cylinder SI and CI engines
79.		nass of the air in a room whose dimension	ns are	4m × 5m × 6m at 100 kPa and 25°C is:
	(a)	140.3 kg	(b)	139 kg
	(c)	141 kg	(d)	138 kg
80.	Stear	n coming out of the whistle of a pressure		
	(a)	dry saturated vapour.	(b)	
	(c)	super-heated vapour.	(d)	ideal gas.
81.	For t	he same maximum pressure and the heat		1 m
	(a)	$\eta_{Otto} > \eta_{Diesel}$	(b)	$\eta_{\text{Dicsel}} > \eta_{\text{Otto}}$
	(c)	η _{Otto} = η _{Diesel}	(d)	Not comparable
	-	NOTESM		
		$\mathcal{W}w$	w.n	OTESMY FOOT. COM.

- Job evaluation is the method of determining the 82.
 - (a) relative value of a job.

(b) workers performance on a job.

(c) worth of the machine.

- (d) value of overall production.
- If 'R' is the base rate guaranteed per hour, 'S' is the standard time for the job and 'T' is the actual time, then according to Rowan plan, wages for the job will be: 33.
 - (a) TR

(b) $TR + \frac{s-\tau}{2} \times R$

(c) TR + (S-T)R

(d) $TR + \frac{s-\tau}{s} \times R$

- ISO 14001 is: 84.
 - (a) Quality Management System Requirements.
 - (c) Environmental Management System Requirements.
- Information Technology Service Management System Requirements.
- Occupational Health and Safety Management System Requirements. î.
- Just-in-Time (JIT) is also known as: 85.
 - (a) Pull System of Manufacturing
 - (c) Kaizen Activity

- (b) Push System of Manufacturing
- (d) Both (a) and (b)
- An example of control chart for fraction defectives is: 86.
 - (a) p-chart

(b) c-chart

(c) u-chart

- (d) X bar-R- chart
- Which of the following is not a type of inventory? 87.
 - (a) Raw material

(b) Work-in-Process (WIP)

(c) Finished goods

- (d) Production facilities
- For the network shown in the figure below, the critical path is along: 88.

(a) 1-2-3-4-8-9

1-2-3-5-6-7-8-9

(c) 1-2-3-4-7-8-9

- 1-2-5-6-7-8-9
- Chips with built-up edge can be expected when machining: 89.
 - (a) ductile material.

(b) brittle mate 'ai.

(c) hard material.

- (d) tough material.
- 90. Cast Iron during machining process produces:
 - (a) continuous chips.

- (b) discontinuous chips.
- (c) continuous chips with built-up-edge.
- (d) none of these.

9	1. W	hich of the following pair(s) materi correctly	^ 0	23% carbon
	I.	Hypo-eutectoid steelless th	an v.c	1530° C
	II. III	Melting point of iron in its purest form The boundary between a liquid phase an	da (L	+S) phase in a binary phase diagram is call
	***	Solidue		
	IV	. Iron and steel are also termed as austen	itic st	eelin α-region.
	(2		(b)	I and IV
	(0		(d)	II and III
92	. Th	e adhesiveness is the property of sand due to	whic	:h:
	(a	it evolves a great amount of steam and other gases.	(b)	the sand grains stick together.
	(c) it clings to the sides of a moulding box.	(d)	none of these.
93	. A c	easting process used to get a thin-walled me	tal pro	oduct is:
	(a)) Slush Casting	(b)	Investment Casting
	(c)	Slip Casting	(d)	Shell Mould Casting
94.	Wh	ich one of the following welding processes	uses a	non-consumable electrode?
	(a)	MIG	(b)	TIG
	(c)	Thermit Welding	(d)	Shielded Arc Welding
95.	Whi	ich one of the following procedural step is i	not a p	part of Powder Metallurgy technique?
	(a)	Compaction	(b)	Mixing & Blending
	(c)		(d)	Drying & Firing
96.	Peer	, Eye, Cheeks and Face refers to the parts	of:	
	(a)	Hacksaw	(b)	Tongs
	(c)	Hammer	(d)	Files
07		anized iron is soft steel coated with molter	ı: ·	
97.			(b)	Brass
	(a)	Copper	·(d)	Tin
	(c)	Zinc	• •	
98.	The	nardness of a grinding wheel is determined	by th	ie:
	(a)	hardness of abrasive-grains.	(ъ)	
	(c)		(d)	ability of the grinding wheel to penetrate work piece.
99.	In or	der to have interference fit, it is essential t	hat th	e lower limit of the shaft should be:
<i>77</i> .		Greater than the upper limit of the hole.	(h)	Lesser than the upper limit of the north
	(a) (c)	Greater than the lower limit of the hole.	(d)	Lesser than the lower limit of the hole.
100.	The f	lux commonly used in brazing is:		
	(a)	Zinc chloride	(b)	Ammonium Chloride
		Resin plus alcohol	(d)	Borax
	(c)	Troom had present		

問題上十十十

ALIGARH MUSLIM UNIVERSITY, ALIGARH Answer Key B.E.(MECHANICAL) Admission Test 2019-20 SERIES: A

Q.No.	Answer
1	
2	C
3	A
4	A D
5	D
4 5 6 7	A B B
7	В
8	В
9	Α
10	A A B
11	В
12	В
12 13 14	D
14	D
15	B D D
16	В
17	D
18	Α
19	D A B A
20	Α
21	В
22	A
23	A
22 23 24 25	A D C
25	С
26	D
27	В
28	В
29	В
30	D
31	D
32	D
33	D C C D D
34	D
35	+- - -
36.	+ D
37	+ D
38	D
39	D D
40	D

Q.No.	Answer	
41	C	
42	C	
43	В	
44	Α	
45	C	
46	B A C D B	
47		
48	В	
49	C C D A C D	
50	C	
51	C	
52	C	
53	D	
54	A	
55	С	
56	D .	
57	_ A	
58	D	
59	A	ĺ
60	С	
61	A D A C C C D	
62	С	
63	D	l
64	D	I
65	В	1
66	Α	
67	D	
68	D	
69	С.	
70	В	
71	C	
72	В	
73	В	_
74	В	_
75	A	
76	C	_
68 69 70 71 72 73 74 75 76 77 78	A	_
78	C	_
79	A	_
80	A D D C B C B C A C A C A C C	_
		-

Q.No.	Answer	
81	В	
82	Α	
33	D	
84	С	
85	Α	
86	Α	
87	D	
88	В	
89	A	
90	В	
91	A	
92	C	١
93	A	1
94	В	1
95	D	٦
96	С	٦
97	C	٦
98	В	٦
99	A	٦
100	D	
		_

NOTESMY**FOOT**.COM WWW.nOTESMYfOOT.cOM

> COORDINATOR DATED: 13.06.2019