## WwW.nOTESmYfOoT.cOM

1. What is the value of current passing through the resistor  $R = 2\Omega$  in the figure shown below?



(a) I A

(b) 0.5 A

(c) 1.5 A

(d) Zero

2. By increasing transmission voltage by a factor of 2, power transfer increases by a factor of:

(a) 1/4

(b) 2

(c) 4

(d) 8

3. The feeder is designed mainly from the point of view of:

- (a) its current carrying capacity
- (b) voltage drop in it

(c) operating voltage

(d) operating frequency

The current in a 3-phase unbalanced system are:

$$\overrightarrow{l_R} = (12+j2)A$$

$$\overrightarrow{I_y} = (12 - j12)A$$

$$\overrightarrow{I_B} = (-15 + j10)A$$

The phase sequence is RYB. The zero phase sequence component in R-phase is:

(a) (1.5 + j2.3) A

(b) (3+j1.33) A

(c) (2.8 + j6.7) A

(d) (1.5 + j0.15) A

5. The least expensive protection for low-voltage system is:

(a) isolator

(b) oil circuit breaker

(c) fuse

(d) air break circuit breaker

6. A two-pole alternator is running at 3000 R.P.M. Its angular velocity is:

- (a) 120π rad/s
- WAX THE
- (b) 100π rad/s

(c) 150π rad/s

(d) 200π rad/s

7. A synchronous motor running with over excitation acts as a capacitor when it is:

(a) fully loaded

(b) half leaded

(c) quarter loaded

(d) not loaded

8. A thermal generating station has an installed capacity of 20 MW and supplies a daily load of 18 MW for 16 hours and 9 MW for remaining 8 hours. The plant capacity factor for this station is

(a) 1

(b) 0.75

(c) 0.67

(d) 0.50

NOTESMY**FOOT**.COM

WWW.nOTESMYFOOT.cOM

9. Figure given below shows the daily load curve of a generating station. The units generated per day will be:





10. In a three phase system, the line losses are:

- (b) inversely proportional to coso
- (c) inversely proportional to cos²φ
- (d) directly proportional to cos<sup>2</sup> \$\phi\$
- In the power system, the resonance rarely occurs at the supply frequency because:

- (d) circuit capacitance is very small as compared to inductance
- 12. Which of the following is the correct expression for resonant frequency ω?

(a) 
$$\omega_r = \omega_n \sqrt{1 - \xi^2}$$

(b) 
$$\omega_r = \omega_n \sqrt{1 + \xi^2}$$

(c) 
$$\omega_r = \omega_n \sqrt{1 - 2\xi^2}$$

(d) 
$$\omega_r = \omega_\eta \sqrt{1 + 2\xi^2}$$

13. For which type of measurements, a piezo electric transducer is suitable?

14. A solar cell is a:

15. The negative real axis in G(s) H(s) plane for Nyquist plot corresponds to:

| 16. | The elements in the first column of Routh-Hurs                                                                                                                                                                        | vitz table are:                                                                                                                                                                                          |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10. |                                                                                                                                                                                                                       | 5, 7.5, 8, -6, 4                                                                                                                                                                                         |
|     | How many poles of the system have positive re  (a) 4  (c) 2                                                                                                                                                           | al part? (b) 3 (d) 1                                                                                                                                                                                     |
| 17. | An increase in the gain of critically damped system  (a) Over damped system  (c) Oscillatory system                                                                                                                   | (b) Under damped system (d) Critically stable system                                                                                                                                                     |
| 18. | For the under damped second order system the (a) less than I (c) equal to I                                                                                                                                           | (d) less than 2 but greater than I                                                                                                                                                                       |
| 19. | (a) Accuracy                                                                                                                                                                                                          | (d) Sensitivity                                                                                                                                                                                          |
| 20. | For maximum power transfer from an elect<br>should be:  (a) very low  (c) equal to the internal impedance of the<br>transducer                                                                                        | (b) very high (d) linearly increasing from very low values to very high values.                                                                                                                          |
| 21  | (a) Thermocouple                                                                                                                                                                                                      | (d) Bourdon tube of a pressure gauge                                                                                                                                                                     |
| 22  | reach 98% of the final value is:  (a) 1 s                                                                                                                                                                             | (b) 2 s (d) 8 s                                                                                                                                                                                          |
| 23  | $\frac{dy(t)}{dt}$                                                                                                                                                                                                    | $\frac{t}{t} + y(t) = \delta(t)$                                                                                                                                                                         |
| ;   | <ul> <li>(a) e<sup>t</sup></li> <li>(c) e<sup>t</sup> u(t)</li> <li>24. An ammeter has a current range of 0 - 5A the range to 0 - 25A, we need to add a resit</li> <li>(a) 0.8 Ω in series with the meter.</li> </ul> | (b) e <sup>-t</sup> (d) e <sup>-t</sup> u(t)  A, and its internal resistance is 0.2 Ω. In order to change istance of:  (b) 1.0 Ω in series with the meter.  (d) 0.05 Ω in parallel with the meter.  P.T. |
|     | (c) $0.04 \Omega$ in parallel with the meter.                                                                                                                                                                         | 4 !                                                                                                                                                                                                      |

WWW.nOTESMYfOot.cOM

| 25. | cello         | potentiometer is designed to measure up<br>of e.m.f. 1.18 V obtains balance at 600 mm<br>of the test cell is: | to abo         | out 2V with a slide wire of 800 mm. A standard est cell is seen to obtain balance at 680mm. The |
|-----|---------------|---------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------|
|     | (a)           | 1.00 V                                                                                                        | (b)            | 1.34 V                                                                                          |
|     | (c)           | 1.50 V                                                                                                        | 3.7            | 1.70 V                                                                                          |
| 26. | The r         |                                                                                                               | d to n         | neasure 3-phase, 3-wire balanced or unbalanced                                                  |
|     | (a)           | 239                                                                                                           | (b)            | 2                                                                                               |
|     | (c)           | •                                                                                                             | (q)            |                                                                                                 |
| 27. | A sys         | tem is said to be effectively grounded on                                                                     | y if           | $\frac{R_0}{K_1}$ and $\frac{X_0}{X_1}$ are respectively:                                       |
|     | (a)           | $\leq 1$ and $\leq 3$                                                                                         | (b)            | $\geq 1$ and $\geq 3$                                                                           |
|     | • •           |                                                                                                               |                | $\geq 2$ and $\leq 2$                                                                           |
| 20  | For a         | d c series motor the relationship between                                                                     | n sne          | ed of motor at particular load(N), flux per pole                                                |
| 28. |               | nd back e.m.f. (E <sub>b</sub> ) is:                                                                          | spc            |                                                                                                 |
|     |               | $N_2 = E_{h_2} \phi_1$                                                                                        |                | $N_2 = E_{b_1} \phi_2$                                                                          |
|     | (a)           | $\frac{N_2}{N_2} = \frac{E_{b_2} \phi_1}{E_{b_1} \phi_2}$                                                     | (b)            | $\frac{N_2}{N_1} = \frac{E_{b_1}}{E_{b_2}} \frac{\phi_2}{\phi_1}$                               |
|     |               | -01-72                                                                                                        |                | N F. A.                                                                                         |
|     | (c)           | $\frac{N_1}{N_2} = \frac{E_{b_2}}{E_{b_1}} \frac{\phi_2}{\phi_1}$                                             | (d)            | $\frac{N_1}{N_2} = \frac{E_{b_1}}{E_{b_1}} \frac{\phi_1}{\phi_2}$                               |
|     |               | $N_2$ $E_{b_1} \varphi_1$                                                                                     |                | Ν2 Ε <sub>β2</sub> Ψ2                                                                           |
| 29. | Selec         | t the correct statement:                                                                                      |                |                                                                                                 |
|     | (a)           | In an Induction Motor, actual speed is equal to synchronous speed.                                            | (b)            | In an Induction Motor, actual speed is always less than the synchronous speed.                  |
|     | (c)           | In an Induction Motor, actual speed is always greater than the synchronous speed.                             | (d)            | None of the above.                                                                              |
| 20  | Eanis         | valent-Pi model is quite suitable for analy                                                                   | zing t         | he performance of transmission line of:                                                         |
| 30. |               |                                                                                                               |                | 150 km of length                                                                                |
|     | (a)           | 50 km of length                                                                                               | (b)<br>(d)     |                                                                                                 |
|     | (c)           | 30 km of length                                                                                               | ` '            |                                                                                                 |
| 31. | The d         | l.c. motor, which can provide zero speed r                                                                    |                | tion at full load without any controller is a:                                                  |
|     | (a)           | series motor                                                                                                  | (b)            |                                                                                                 |
|     | (c)           | cumulatively compounded motor                                                                                 |                |                                                                                                 |
| 32. | Unde<br>volta | no load condition, if the applied voltage to half the rated value:                                            |                | an induction motor is reduced from the rated                                                    |
|     | (a)           | the speed decreases and the stator current increases.                                                         |                | both the speed and the stator current decreases.                                                |
|     | (c)           |                                                                                                               | (d)            | there is negligible change in speed but the stator current decreases.                           |
| 33. | A 50          | kVA, 3300 / 230 V single-phase transfo<br>age of 3300 V. The nominal rating of the au                         | rmer<br>itotra | is connected as an auto transformer with input insformer will be:                               |
|     |               |                                                                                                               | (b)            | 53.5 kVA                                                                                        |
|     | (a)           | 50.0 kVA<br>717.4 kVA                                                                                         |                | 767.4 kVA                                                                                       |
|     | (c)           |                                                                                                               | _              | WWW.nOTESMYfOOT.cOM P.T.O.                                                                      |
|     |               | NOTES                                                                                                         | MYFC           | OT.COM Scanned with CamScanner                                                                  |

|    | 7.4 | The n       | o-load current in a transformer lags the ap                                               | plied | vo   | Itage by:                                 |                  | ,               |
|----|-----|-------------|-------------------------------------------------------------------------------------------|-------|------|-------------------------------------------|------------------|-----------------|
|    | 34. |             | 90°                                                                                       | (b)   | ab   | out 75°                                   |                  | ĺ.              |
|    |     | (- <i>y</i> | 0°                                                                                        | (d)   | ab   | out 110°                                  |                  | 9               |
|    |     | (-,         |                                                                                           |       |      |                                           |                  |                 |
|    | 35. | In pov      | wer transformers, core is made up of:                                                     | (b)   | 9    | licon steel                               |                  |                 |
|    |     | (-,         | Cast iron                                                                                 | (b)   |      | owdered alloy                             |                  |                 |
|    |     | (c)         | Ferrite                                                                                   |       |      |                                           |                  |                 |
|    | 36  | The v       | oltage applied to a transformer primary i                                                 | s inc | rea  | sed keeping V/f cor                       | istant.With the  | s, the core     |
|    | 36. | loss w      | vill:                                                                                     |       |      |                                           |                  |                 |
| T. |     | (a)         | decrease and magnetizing current Im                                                       | (b)   | i    | nerease and Im will a                     | ilso increase.   |                 |
|    |     |             | '11 i                                                                                     |       |      |                                           | esmain constan   |                 |
| ٠. | ۵   | (c)         | remain constant and I <sub>m</sub> will also remain                                       | (d)   | 1    | ncrease and Im Will                       | Cinain Constan   |                 |
| 4  |     |             | constant.                                                                                 |       |      |                                           |                  | 200/ 160        |
|    |     | When        | the supply voltage to a 3-phase squi                                                      | rrel  | cag  | e induction motor                         | is reduced by    | y 20%, the      |
|    | 37. | maxin       | num torque will decrease by:                                                              |       |      |                                           |                  |                 |
|    |     |             | 10%                                                                                       | (b)   |      | 20%                                       |                  |                 |
|    |     | (a)<br>(c)  | 36%                                                                                       | (d)   | , (  | 40%                                       |                  |                 |
|    |     |             |                                                                                           |       |      |                                           |                  |                 |
|    | 38. | The d       | lummy coil in a d.c. machine is used to:                                                  |       |      | reduce armature rea                       | ection.          |                 |
|    |     | (a)         | eliminate reactance voltage.                                                              |       | )    | reduce armatare red<br>reduce harmonics g | renerated in an  | nature.         |
|    |     | (c)         | provide mechanical balance to the                                                         | (d)   | )    | reduce natmomes g                         | ,0               |                 |
|    |     |             | armature.                                                                                 |       |      |                                           |                  |                 |
|    |     | A cto       | r-delta starter is equivalent to an auto-tra                                              | nsfo  | me   | er starter with a tap                     | ong or:          | •               |
|    | 39. |             |                                                                                           | (b    | )    | 57.73%                                    |                  |                 |
|    |     | (a)         | 86.6%                                                                                     |       |      | 58%                                       |                  |                 |
|    |     | (c)         | 57%                                                                                       |       |      |                                           |                  |                 |
|    | 40. | The         | m.m.f. produced by the rotor currents of                                                  | a 3-p | has  | e induction motor.                        |                  | tor m.m.f.      |
|    | 40. | (a)         | rotates at the speed of rotor in the air gap                                              | . (t  | ))   |                                           |                  | h respect to    |
|    |     | (c)         | a alia speed with respect to                                                              | (0    | J)   |                                           | ious speed wit   | i respect to    |
|    |     | -           | •                                                                                         |       |      | rotor.                                    |                  | -               |
|    |     |             | stator m.m.r.  ee identical bulbs are connected in ser                                    | ies a | ınd  | supplied with a 3                         | 100 V battery    | . The current   |
|    | 41. | Thre        | ee identical bulbs are connected in secund the second bulb, if the battery is sup         | plyin | g c  | ne ampere current,                        | 15:              |                 |
|    |     |             |                                                                                           | (     | b)   | 2.0 A                                     |                  |                 |
|    |     |             | 1.5 A                                                                                     |       |      | 1.0 A                                     |                  |                 |
|    |     | (c)         | 1.20 A                                                                                    | `     | -,   | 1 60 6 70                                 | ales without ar  | y alteration in |
|    | 42. | A 3         | -phase squirrel cage induction motor has                                                  | its s | tato | or rewound for o-pe                       | nes william      | •               |
|    | 42. | the         | rotor. The motor would now run at a spe                                                   |       |      |                                           |                  |                 |
|    |     |             | < 1000 rpm                                                                                | (     |      | < 1500 rpm                                |                  |                 |
|    |     |             |                                                                                           | (     | (d)  | zero rpm                                  |                  |                 |
|    |     | (0)         | < 1200 rpm -phase induction motor takes 60 kW out - phase induction motor takes 60 kW out |       | vhi  | ch 1 kW is wasted                         | as stator losse: | s. What will be |
|    | 43. | . A3        | -phase induction motor takes 60 kW out                                                    | tor a | t a  | slip of 3%?                               |                  |                 |
|    | ,   | the         | mechanical power developed by this                                                        |       | (h)  | 57.23 kW                                  |                  |                 |
|    |     | (a)         | ) 60.55 kW                                                                                |       | (o)  | 50.25 kW                                  |                  |                 |
|    |     | (c          | ) 55.20 kW                                                                                |       | (a)  | JU,25 H                                   |                  | P.T.O           |
|    |     |             | = 59 (0.97)                                                                               | 6     |      |                                           |                  |                 |
|    |     | 23          | 2 73 (677)                                                                                |       |      |                                           |                  |                 |
|    |     | 7/3         | 2                                                                                         |       |      |                                           |                  |                 |

- 44. Stator and rotor leakage reactance of a three-phase induction motor:
  - (a) improve its operating power factor.
- (b) decrease its operating power factor.
- (c) improve its starting torque.
- (d) have no effect on motor performance.

- 45. If the iron and copper losses of a transformer on full load are given as P<sub>1</sub> and P<sub>2</sub> respectively, then the maximum efficiency occurs at 50% full load when:
  - (a) P1:P2=1:6

(b)  $P_1: P_2 = 1:2$ 

(c) P1: P2 = 1:4

- (d) P1: P2 = 1:5
- 46. Damper winding is provided in synchronous motor to:
  - (a) provide maximum torque
- (b) prevent hunting

(c) increase speed

- (d) reduce speed
- 47. If the field resistance of a dc shunt generator is increased beyond its critical value, the generator:
  - (a) output voltage will exceed its nameplate rating
- (b) will not build-up any voltage
- (c) may bum out if loaded up-to its rating
- (d) power output may exceed its name-plate rating
- 48. Superposition Theorem is not applicable for:
  - (a) Voltage calculation

(b) Bilateral elements

(c) Power calculations

- (d) Passive elements
- 49. The force experienced by a conductor of length L, carrying a current I, placed in a magnetic field B is given by (conductor is perpendicular to B):---
  - (a)  $\frac{B}{IL}$

(b)  $\frac{IL}{B}$ 

(c) BIL

- (d)  $\frac{I}{BL}$
- 50. In the circuit shown the frequency of voltage source is variable. At f = 0 and  $f = \infty$ , the magnitude of current will be:





(a) 0 A, 8 A

(b) 0 A, 0A

(c) 8 A, 8 A

- (d) 8 A, 0A
- 51. For a coil having N number of turns and flux linkage φ, the induced e.m.f. in the coil is given by:
  - (a)  $emf = \phi \frac{dN}{dt}$

(b)  $emf = t \frac{dN}{d\phi}$ 

(c)  $emf = N \frac{dt}{d\phi}$ 

(d)  $emf = N \frac{d\phi}{dt}$ 

Mutual inductance between two coils as shown in circuit is: 52.



- (a) 4.8 mH
- (c) 4 mH

- (b) 15 mH
- (d) 24 mH
- Figure shows a part of a closed circuit. What is the potential difference between points A and B?



- (a) 6 V
- (c) 24 V

- (b) 18 V
- (d) 12 V
- The quantity of charge that will be transferred by a current flow of 10 A over 1-hour period is:

  - (c) 3.6×10<sup>4</sup> C
- 0= clit =
- (b) 2.4×10<sup>3</sup> C
  - (d) 1.6×10<sup>2</sup> C 2
- A wire having resistance R is drawn through a dye so that its length is increased  $\frac{2}{3}$  times. The new value of the resistance will be:
  - (a) 3 R

(b)  $\frac{3}{2}$  R

- (d)  $\frac{2}{3}R$
- A flux of 0.5 mWb links a coil of 400 turns. If the flux is reversed in 0.2s, then the average value of 56. the induced voltage in the coil will be:
  - (a) 10 V

(c) 2 V

- Power transmission lines are transposed to reduce: 57.
  - (a) Skin effect

(b) Ferranti effect

(c) Transmission loss

- Interference with neighbouring communication lines
- The voltage across R and L in a series RL circuit are found to be 200 V and 150 V respectively.
- The r.m.s. value of the voltage across the series combination is:
  - (a) 250 V

(b) 360 V

(c) 450 V

(d) 400 V

- 59. Time constant for RL series circuit is given by:
  - (a)  $\frac{R}{L}$

(b)  $\frac{1}{RL}$ 

(c) RL .

- (d)  $\frac{L}{R}$
- 60. What will be r.m.s. value of a rectangular wave with amplitude 10V (min. 0V, max. 10V)?
  - (a) 5√2 V

(b) 5 V

2 10

(c) 7.7 V

- (d) 10 V
- 61. Noise generated in a resistor is also known as:
  - (a) Partition noise

(b) White noise

(c) Thermal noise

- (d) Shot noise
- 62. A notch filter is sometimes used in communication receivers to:
  - (a) reduce receiver gain at some specific frequency.
- (b) increase receiver gain at some specific frequency.
- (c) make selectivity more precise.
- (d) none of these.
- 63. Number of binary bits required to represent hexadecimal digit is:
  - (a) 3

(b) 4

(c) 8

- (d) 16
- 64. The circuit given below is functionally equivalent to:



(a) OR gate

(b) NOR gate

(c) AND gate

- (d) EX-OR gate
- 65. De Multiplexer is also known as:
  - (a) Data selection

(b) Data distributor

(c) Flip flop

- (d) Encoder
- 66. A BJT is said to be operating in the saturation region if:
  - (a) both junctions are reverse biased.
- (b) Base emitter junction is reverse biased and base collector junction is forward biased.
- (c) Base emitter junction is forward biased and base collector junction is reverse biased.
- (d) both the junctions are forward biased.



67. What is the value of current I flowing through the ideal diode?



- (a)  $\frac{8}{3}$ A
- (c)  $\frac{3}{8}$ A

- (b)  $\frac{z}{3}\Lambda$
- (d)  $\frac{3}{2}$ A

68. For the given circuit, find I & Vo for ideal diode condition:



- (a) 20 mA, 20 V
- (c) 0 mA, 20 mV

- (b) 20 mA, 20 mV
- (d) 20 mA, 0 V

69. The output of a particular Op-Amp increases 8V in 12 μs, the slew rate is:

(a) 90 V/μs

(b) 0.67 V/μs

(c) 1.5 V/μs

(d) 20 V/μs

70. In an Op-Amp if  $A_d = 3500$  and  $A_{cm} = 0.35$ , then the CMRR is:

(a) 1225

(b) 10000

(c) 80 dB

(d) Both (a) and (c)

71. The output of a NAND gate will be low if two inputs are:

(a) 11

(b) 01

(c) 10

(d) 00

72. If the ac input to half-wave rectifier is an r.m.s. value of  $\frac{400}{\sqrt{2}}$  volts, the diode PIV rating is

(a)  $400 \times \sqrt{2} \text{ V}$ 

(b)  $\frac{400}{\sqrt{2}}$  V

(c) 400 V

(d) 200 V

73. When bipolar junction transistor (BJTs) are used in digital circuits they usually operate in:

(a) breakdown region

(b) active region

(c) linear region

(d) saturation and cut off regions

74. If a transistor has a  $\beta$  of 250 and a base-current of 20  $\mu$ A, then emitter current equals:

Ļ

(a) 5 mA

(b) 5.02 mA

(c) 50 mA

(d) 0.5 mA

. <u>l</u>e

· /C 1

- The binary equivalent of the decimal number 368 is: 75.
  - (a) 110110000

(b) 101110000

111100000

- (d) 111010000
- The resistance of a wire is  $5\Omega$  at  $50^{\circ}$ C and  $6\Omega$  at  $100^{\circ}$  C. The resistance of the wire at  $\Omega$  C will
  - (a) 2Ω

(b) 1 Ω

(c) 4 \O

- (d) 3Ω
- The greatest length of a copper wire that can hang without breaking would be [ Breaking stress =  $7.2 \times 10^7$  N/m<sup>2</sup>: Density of copper = 7.2 g/cc; g = 10 m/s<sup>2</sup>]:
  - (a) 10 m

(b) 100 m

(c) 1000 m

- (d) 10,000 m
- A ship of mass 3×10'kg which is initially at rest can be pulled through a distance of 3 m by means of a force of 5×10<sup>3</sup> N. If there is no water resistance, then the speed attained by the ship will be:
  - (a) 0.1 r 's

(b) 1 m/s

(c) 10 r./s

- (d) 0.01 m/s
- Two masses, one 'n' times heavier than the other, have equal kinetic energy. The ratio of their momenta (p2/p1) would be:
  - (a)  $\sqrt{n}$

(b) n

(c)  $n^{3/2}$ 

- (d)  $n^2$
- Find the value of irms for the variation of current as given below:



(a)  $i_{cms} = i_0 / 4$ 

(b)  $i_{rms} = i_0 / 2$ 

(c)  $i_{rms} = 4i_0 / 3$ 

- (d)  $i_{rms} = i_0$
- An inductance coil of 0.50 H and resistance 100  $\Omega$  is connected to a 220V, 50 Hz a.c. supply. What is the time lag between the voltage maximum and current maximum?
  - (a) 3.2 ms

(b) 3.0 ms

(c) 1.57 ms

- (d) 2.57 ms
- A nucleus with z = 92 emits the following in a sequence:

α, α, β-, β-, α, α, α, α, β-, β-, α, β+, β+, α.

The z of the resulting nucleus is:

(a) 76

(c) 82

WWW.nOTESMYfOOT.cOM

| 83.   | A potentiometer wire has a length of 5m a resistance box are connected in series with it. as to get a potential gradient of 0.1 V/m will be | nd resistance of 2 $\Omega$ /m. A cell of e.m.f. 5V and a The value of resistance to be introduced in the box so the control of the |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | (a) 55 Ω                                                                                                                                    | (b) 90 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | (c) 115 Ω                                                                                                                                   | (d) 172 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 84.   | Bomb calorimeter is used to estimate:                                                                                                       | to the value of manager fuels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | (a) calorific value of solid and liquid fuels                                                                                               | <ul><li>(b) calorific value of gaseous fuels.</li><li>(d) composition of gaseous fuels.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | <ul><li>(c) composition of solid and liquid fuels.</li></ul>                                                                                | (d) composition of gaseous fuers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 85.   | The luster of a metal is due to:                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | (a) presence of free electrons                                                                                                              | (b) its chemical inertness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | (c) its hydraulic washing                                                                                                                   | (d) its high density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 86.   | What chemicals can be used to make a buffer                                                                                                 | of $pH = 10$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 60.   | (a) CH <sub>3</sub> COOH + CH <sub>3</sub> COONa                                                                                            | (b) NH <sub>4</sub> OH + NH <sub>4</sub> Cl -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | (c) H <sub>3</sub> PO <sub>4</sub> + CH <sub>3</sub> COONa                                                                                  | (d) CH <sub>3</sub> COOH + NH <sub>4</sub> Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 87.   | Which of the following is not a greenhouse g                                                                                                | as?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| • • • | (a) CO <sub>2</sub>                                                                                                                         | (p) CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | (c) CH <sub>4</sub>                                                                                                                         | (d) Water ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 88.   | Which of the following is not a disinfectant?                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 00.   | (a) CaOCi2                                                                                                                                  | (b) CINH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | (c) O <sub>3</sub>                                                                                                                          | (d) Na <sub>2</sub> CO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 89.   | Which of the following metal forms a volati                                                                                                 | le oxide film?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 89.   | (a) Al                                                                                                                                      | (b) Pb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | (c) Au                                                                                                                                      | (d) Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ••    | Nylon-6 is prepared by the self-polymerizat                                                                                                 | ion of:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 90.   |                                                                                                                                             | (b) ω-Amino undecanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | (a) Caprolactam (c) Hexa-methylene diamine                                                                                                  | (d) Adipic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | Which of the following functional groups is                                                                                                 | of an aldehyde?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 91.   | Which of the following functional groups is                                                                                                 | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | (a) — OH                                                                                                                                    | $\begin{array}{ccc} H & & \\ \text{(b)} & -C = 0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | (a) — 311                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | (c) _ L_                                                                                                                                    | (d) - C-OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | (e) -E-                                                                                                                                     | 20-011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 92.   | Electrolysis of water produces                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | (a) OH-and O <sup>2</sup>                                                                                                                   | (b) H <sub>2</sub> and H <sub>3</sub> O <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | (c) H <sub>3</sub> O <sup>+</sup> and OH <sup>-</sup>                                                                                       | (d) H <sub>2</sub> and O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                                                                                             | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

WWW.nOTESMYfOoT.cOM

- The value of 4 cos12° cos48° cos72° is: 93.
  - (a) cos 36°

(b) cos72.º

(c) sin36°

- (d) sin72°
- The value of k for which the points (k, 2-2k), (-k+1, 2k) and (-4-k, 6-2k) are collinear is: 94.
  - (a) any value of k

(b) k = -1 or  $k = \frac{1}{2}$ 

(c)  $k = 1 \text{ or } k = -\frac{1}{2}$ 

- (d) k=1 or k=1/2
- If  $\cos 40^\circ \sin 40^\circ = x$ , (x < 2), then value of  $\cos 80^\circ$  is
  - (a)  $x\sqrt{2-x^2}$

(b) 2r

(c)  $-x\sqrt{2-x^2}$ 

- (d)  $x + \sqrt{2 x^2}$
- The maximum value of  $\frac{\log_e x}{x}$  for x > 0 is
  - (a) e

(c)  $e^2$ 

- 97. Value of  $\int_{-3}^{3} \frac{x^2 \sin x}{1+x^6} dx$  is
  - (a) 0

(c) 2

- 98. Let  $\vec{a} = 2\hat{\imath} + 3\hat{\jmath} \hat{k}$  and  $\vec{b} = \hat{\imath} 2\hat{\jmath} + 3\hat{k}$ , then the value of  $\lambda$  for which the vector  $\vec{c} = \lambda \hat{i} + \hat{j} + (2\lambda - 1)\hat{k}$  is parallel to the plane containing  $\vec{a}$  and  $\vec{b}$  is:
  - (a) 1 <sup>^</sup>

(b) 0

- (d) 2
- The equation of tangent to the circle  $x^2 + y^2 + 4x 4y + 4 = 0$  which makes equal intercepts on  $x^2 + y^2 + 4x 4y + 4 = 0$ positive quadrant is given by:
  - (a) x + y = 1

(b)  $x + y = \sqrt{2}$ 

(c)  $x + y = \frac{1}{\sqrt{5}}$ 

- (d)  $x + y = 2\sqrt{2}$
- 100. If the percentage error in the edge of a cube is I, then the error in its volume is:
  - (a) 1%

(b) 2%

(c) 3%

(d) 4%

z (I)

## ALIGARH MUSLIM UNIVERSITY, ALIGARH Answer Key B.E.( ELECTRICAL ) Admission Test 2019-20 SERIES: B

|                                      | _        |                       |          |  |
|--------------------------------------|----------|-----------------------|----------|--|
| Q.No.                                |          | swer                  |          |  |
| 1                                    |          | D<br>C                |          |  |
| 2                                    |          | <u>C</u>              | -        |  |
| 3                                    |          | A D                   | 1        |  |
| 4                                    |          | $\frac{D}{C}$         | 1        |  |
| 3                                    | _        | <del>D</del>          | 1        |  |
| - 0                                  | _        | D                     | 1        |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 |          | A B C B D B           | 1        |  |
| 9                                    | _        | <u> </u>              | 1        |  |
| 10                                   | _        | $\frac{\alpha}{c}$    | 1        |  |
|                                      | $\vdash$ | <del>D</del> -        | 1        |  |
| 12                                   | -        | $\frac{\tilde{c}}{c}$ | 1        |  |
| 11<br>12<br>13                       | $\vdash$ | B                     | 1        |  |
| 14                                   | $\vdash$ | <u> </u>              | 1        |  |
| 15                                   | $\vdash$ | <del></del>           | 1        |  |
| 15<br>16                             | +-       | A C D C B A B A B A B | 1        |  |
|                                      | ╀        | R                     | -        |  |
| 17                                   | ╀        | <u> </u>              | ┨        |  |
| 18<br>19                             | ╀        | $\frac{\Lambda}{R}$   | $\dashv$ |  |
| 19                                   | ╀        | <del>-</del>          | $\dashv$ |  |
| 20                                   | ╀        | C<br>B                | $\dashv$ |  |
| 21                                   | ╀        | _ <del>_</del>        | $\dashv$ |  |
| 22                                   | ╀        | C<br>D                | $\dashv$ |  |
| 23                                   | ╀        | 뉴                     | $\dashv$ |  |
| 24                                   | +        | D<br>B                | $\dashv$ |  |
| 25                                   | +        | _ <u>B</u>            | $\dashv$ |  |
| 26                                   | +        | В                     | $\dashv$ |  |
| 27                                   | 4        | A                     | $\dashv$ |  |
| 28                                   | 4        | _ <u>A</u>            | $\dashv$ |  |
| 29                                   | 4        | <u>B</u>              |          |  |
| 29<br>30                             | $\perp$  | D                     |          |  |
| 31                                   | $\perp$  | D                     |          |  |
| 32                                   |          | D                     |          |  |
| 32<br>33<br>34                       |          | B D D D D B           |          |  |
| 34                                   |          | В                     | _        |  |
| 35                                   | $\neg$   | В                     | . '      |  |
| 35<br>36                             | $\neg$   | D                     |          |  |
| 37                                   | $\neg$   | С                     |          |  |
| 38                                   |          | D<br>C                |          |  |
| 39                                   |          | В                     | 1        |  |
| 40                                   |          | B                     | 3        |  |
|                                      |          |                       |          |  |

|   |                                              |          | -           |                       |   |  |
|---|----------------------------------------------|----------|-------------|-----------------------|---|--|
| ( | Q.No. An                                     |          | swer        | 1                     |   |  |
|   | 41                                           |          | D           | 1                     |   |  |
|   | 42                                           |          | Λ           | 1                     |   |  |
|   | 43                                           |          | В           | 4                     |   |  |
|   | 44                                           |          | В           | -                     |   |  |
|   | 45                                           |          | С           | -                     |   |  |
|   | 46                                           | _        | В           | -1 %                  |   |  |
|   | 47                                           | _        | В           | -                     |   |  |
|   | 48                                           | <u> </u> | C           | 4                     |   |  |
| L | 49                                           | _        |             | -                     |   |  |
| L | 50                                           | 1        | В           |                       |   |  |
| L | 51                                           | <b>├</b> | D           | $\dashv$              |   |  |
| L | 52                                           | 1        | <u>A</u>    | $\dashv$              |   |  |
| L | 53                                           | 1        | В           | -                     |   |  |
| L | 54                                           | 1        | В           | $\dashv$              |   |  |
| L | 55                                           | 4        | D           | $\dashv$              |   |  |
| L | 56                                           | 4        | С           |                       |   |  |
| l | 57                                           | 1        | D           | $\dashv$              |   |  |
| l | 58                                           | 4        | <u>A</u>    | $\dashv$              |   |  |
| ١ | 59                                           | -1-      | D           | $\dashv$              |   |  |
| ١ | 60                                           |          | A           |                       |   |  |
|   | 61                                           | 4        | C<br>A<br>B |                       |   |  |
|   | 62                                           | 4        |             |                       |   |  |
|   | 63                                           | 4        |             |                       |   |  |
|   | 64                                           |          | С           |                       |   |  |
|   | 65                                           | _        | В           |                       |   |  |
|   | 66                                           | _        | I           |                       |   |  |
|   | 67                                           | $\Box$   | _ E         | 3                     |   |  |
|   | 68                                           |          | I           | 2                     |   |  |
|   | 69                                           |          | 1           | В                     |   |  |
|   | 70                                           |          | 1           | $\Box$                |   |  |
|   | 71                                           |          |             | <u>A</u>              |   |  |
|   | 72                                           |          |             | C                     | ١ |  |
|   | 73                                           |          |             | D                     | ١ |  |
|   | 74                                           |          |             | В                     | ŀ |  |
|   | 75                                           |          |             | В                     | ١ |  |
|   | 70                                           | 3        |             | С                     | ا |  |
|   | 7                                            | 7        |             | С                     |   |  |
|   | 70<br>71<br>72<br>73<br>74<br>75<br>76<br>77 |          |             | Α                     |   |  |
|   | 79                                           |          |             | Α                     |   |  |
|   | 8                                            | 0        |             | D A C D B B C C A A D |   |  |
|   |                                              |          |             |                       | - |  |

| -     |        |  |  |
|-------|--------|--|--|
| Q.No. | Answer |  |  |
| 18    | A      |  |  |
| 82    | В      |  |  |
| 83    | В      |  |  |
| 8.4   | A      |  |  |
| . 85  | A      |  |  |
| 86    | В      |  |  |
| 87    | В      |  |  |
| 88    | D      |  |  |
| 89    | D      |  |  |
| 90 1  | A      |  |  |
| 91    | B      |  |  |
| 92    | D      |  |  |
| 93    | A      |  |  |
| 94    | В      |  |  |
| 95    | A      |  |  |
| 96    | В      |  |  |
| 97    | A      |  |  |
| 98    | A      |  |  |
| 99    | D      |  |  |
| 100   | С      |  |  |
|       |        |  |  |

COORDINATOR DATED: 13.06.2019



WWW.nOTESMYfOot.cOM