67. Which of the following is the reasc pH of about 6 to 10 is maintained if Mohr method of titration? a. In more acidic solution, the chromate ion (indicator) concentration is too low ne equivalence point b. In more alkaline solutions oxide precipitates c. Solubility of silver chlorid than silver chromate in pH d. Both A and B	ar the silver	50% of a solute from an aqueous solution is extracted to ether when volume of both the phases is equal. What would be the percent extraction when the volume of the organic phase is doubled? a. 100 b. 90.9 c. 66.6 d. 24.9	Q.No. I	Discuss the relative basicities of pyridine, piperidine and pyrrole.
69. Which of the following is not the of method error? a. Slight solubility of precipitate b. Impurities in reagents c. Incomplete reactions d. Effervescence and "bumping" sample dissolution	during 	Which of the following statement is NOT true about the Beer-Bouguer-Lambert law (Commonly called Beer's law) for the absorption of monochromatic radiation by a sample? a. Power of the transmitted radiation decreases exponentially as the thickness of the absorbing medium and concentration of the sample increases arithmetically b. Infinite concentration of the sample and thickness of the absorbing medium are required to absorb all the radiation c. Absorbance by the sample is directly proportional to the thickness of the absorbing medium and concentration of the sample d. None of the above	Q.No.2	What is meant by mutarotation? Write down mechanism of mutarotation in D-(+ glucose

process			'
41			
- 1	[Co(NH ₃) ₅ NO ₂]Cl ₂ and [Co (NH ₃) ₆	42.	The correct IUPAC nomenclature for
1	ONOTCI2 are the	- 1	the complex (Ph ₃ P) ₃ RhCl is
- 1	7-12 575 1115	1	a. Tris (triphenyl phosphine) rhodium
- 1	a. Linkage isomers	1	chloride chloride
1	b. Coordination isomers	- 1	b. Chloro trip (right - barrel)
Ì	c. Ionization isomers		b. Chloro tris (triphenyl phosphine) rhodium (1)
	d. Double salt		C. Tris (triphenul - Land)
1	S. Dorote sail		c. Tris (triphenyl phosphine) chloride rhodium (iii)
			d. Tris (triphenyl phoints)
43.	The Ground term for Mn ²⁺ ion is		d. Tris (triphenyl phosphine) rhodium (i) chloride
	ion is	44.	The CESE for law
1	a. ² S		The CFSE for low spin octahedral d'configuration is
	b. 6S		
1	c. ² D		a. 0.8 Δ ₀
	d, ⁴ F	1	o. 1.2 Δ ₀
		1	c. C.4 Δ ₀
45.	The complex [Ni (DMGH) ₂] where	-	d. 0
	DMGH = dimethyl gloximato used in	46.	The biologically significant
	analytical determination of nickel		organometallic complex also a vitamin
1	exhibits the geometry	1	MIOWII as coenzyme Bia noscesses
1	a. Square planal	1	a. Plastocyanin
	b. Trigonal bipyramidal		b. Corrin ring
1	c. Tetrahedeal		c. Porphyrin ring
	d. Octahedeal		d. None of the above
47.	The correct binding constant of	+	
	hemoglobin for oxygen is represented	48.	Ethylene is bonded to PtCl ₃ in zeise salt
1	best in equation		$[K[\Gamma(C)]_3(C_2H_4)]$
-	a. $1 = kp^{2.8}/1 + kp^{2.8}$		a. η ⁶ – hexahepto ligand
1	b. $t = kp/i + kp$		b. η ^s – pentahapto ligand
	c. $t = kp^4/1 + kp^4$		c. η^2 – dihapto ligand
	c. $t = kp^4/1 + kp^4$ d. $t = kp^{0.5}/1 + kp^{0.5}$	1	d. q³ – trihapto ligand
49.	At seveso, Italy the disaster in July 1976,	50.	
1	was due to	30.	COD removal efficiency is 90% in case
	a. DDT		01
	b. BHC		a. UASB Technology
	c. TCDD		b. ASBR Technology
	d. Toxaphene		c. AMBR Technology
51.	The bond order for superoxide ion is	52.	d. EGSB reactor
		52.	Heats of Hydration for Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺
	a. 2		and Cs* follow the order
	b. 2.5		7.*
- 1	c. 1	1	a. Li ⁺ > Na+ > K+ > Rb+ > Cs+
ĺ	d. 1.5	- 1	b. $Cs^+ > Rb^+ > K^+ > Na^+ > Li^+$
		- 1	c. Na ⁺ > K ⁺ > Rb ⁺ > Li ⁺ > Cs ⁺
		- 1	d. $K^+ > Na^+ > Li^+ > Rb^+ > Cs^+$

. 0

the

are K, cule

SEMINAR LIBRARY
Deptt. of Chemistry
A M.U., Aligarh

					1				, -
	The wave function of an electron of hydrogen atom in the lowest energy state is proportional to e^{τ/a_0} (where a_0 is	t.	Spectroscopic transitions are changes in populations of quantized energy levels of system involving.				Glycerol on heating with anhaydrous ZnCl ₂ gives:	20.	Which one of the following is most
	constant and r is the distance from the nucleus, the probability of finding the	8	a. The absorption and emission of radiation				a. Ethylene oxide b. Acetaldehyde		a. m-Nitroaniline b. o-Nitroaniline
	electron inside a region of volume 1.00 pm ³ located at the nucleus is a. Zero	1	b. The absorption and the scattering of electromagnetic radiation The emission and the scattering of			21.	c. Ethanol d. 1,4-Dioxane For a zero-order reaction A	22.	c. p-Nitroaniline d. 2,4-Dinitroaniline If for a reaction the plot of in k versus
,	b. Infinity c. 1.00 pm³ d. Indeterminate	1 1	d. The absorption, the emission and the scattering of electromagnetic radiation				Products, t $\frac{1}{2}$ is proportional to $\frac{1}{2}$ [A] c. $[A_o]^2$ b. 1		1/T gives a straight line, then a. E _a = - (slope) x R b. E _a = (slope) x R c. E _a = - (slope) /R
33	A linear rotor is a rigid rotor with a. Three equal moment of inertia b. Two equal moment of inertia		A Hamiltonian operator is A Hamiltonian operator is The sum of kinetic and potential energy operators				$\frac{1}{[A]} \qquad \qquad \text{d. } \frac{1}{[A_o]^2}$		d. E _a = R/(slope)
	One moment of inertia equal to zero One moment of inertia not equal to zero		b. The sum of position and potential energy operators C. The sum of momentum and kinetic energy operators The sum of position and kinetic energy operators			23.	What is the value of J _{max} for a rigid diatomic molecule for which at 300 K, the rotational constant is 1.566 cm ⁻¹ a. 8 b. 7 c. 9 d. 6	24.	Raman offect is a. Absorption of light b. Emission of light c. Elastic scattering of light d. Inelastic scattering of light
35	Given that the standard potential of the CU^{2^+}/CU and CU^+/CU couples are $+0.340$ V and $+0.522$ V , respectively. The standard potential of the CU^{2^+}/CU^+ couple is a. $+0.182$ V b. $+0.158$ V c. $+0.862$ V d. -0.182 V When a sample of argon, for which $r=5$	e	The expression used to establish criteria for spontaneous change is a. $(ds)u, v \ge 0$ and $\Delta S_{tot} > 0$ by $(ds)u, v \ge 0$ and $\Delta S_{tot} < 0$ c. $(ds)s, v \le 0$ and $\Delta S_{tot} > 0$ d. $(ds)u, v \ge 0$, $(ds)s, v \le 0$ and $\Delta S_{tot} > 0$ d. $(ds)u, v \ge 0$, $(ds)s, v \le 0$ and $\Delta S_{tot} > 0$ The vapour pressure of 0.500 M aqueous KNO ₃ solution at $100~^{0}C$ is	-		25.	A microscope using suitable photons is employed to locate an electron in an atom within a distance of 0.1 A ⁶ , what is the uncertainty involued in the measurement of its velocity? (Mass of electron = 9.1x10 ⁻³¹ kg, Plank's constant = 6.626x10 ⁻³⁴ Js) a. 0.579 x 10 ⁷ ms ⁻¹ b. 5.79 x 10 ⁷ ms ⁻¹ c. 0.579 x 10 ⁷ cms ⁻¹ d. 5.79 x 10 ⁷ cms ⁻¹	26.	The energy of an electromagnetic radiation of wave length 252.7 nm is: (Plank's constant = 6.626x10 ⁹⁴ Js) a. 471.9 kJ b. 270.2 kJ c. 471.9 J d. 270.2 J
	at 100 kPa expands reversibly and isothermally to twice its initial volume the final pressure is a. 32 kPa b. 50 kPa c. 200 kPa d. 132 kPa		99.95 kPa, so the activity of water in the solution at this temperature is (1 atm=101.325 kPa) a. 0.4998 b. 0.9864 c. 0.5050	d 5	- Laboratoria	27.	Which of the following functions are eigen function of the operator d ² /dx ² : a. k ² b. e ^{ax³} g. e ^{ix}	28	A particle of mass 'm' is constrained to move in an infinite one-dimensional box of width '1'. In units of $\left(\frac{1}{m+1}\right)$, the energy change involved in the ansistion n=4 \longrightarrow n=3 is a. 1/8 b. 7/8 c. 1
. 3	The temperature at which the vapour pressure of a liquid is equal to the external pressure is called the a. Boiling temperature b. Normal boiling point c. Standard boiling point d. Critical temperature	40	d. 0.300 The critical pressure, critical volume and critical temperature of methane are 45.6 atm, 98.7 cm ³ mol ⁻¹ and 190.6 K, respectively. The radius of the molecul is a. 0.24 × 10 ⁻¹² m b. 0.24 × 10 ⁻¹⁵ m c. 0.24 × 10 ⁻¹⁶ m d. 0.24 × 10 ⁻⁹ m		Sales Company	29	d. x sin x	30	d. 1/2 A particle of mass 'm' is confined in a one-dimensional box of length 1' the probability of finding the particle in the region o ≤ x ≤ L/2 is a. /r b. 1 c. 3/2 d. 5/2

d. All of these				i!
c. Trans-1,2-Dibromo ethylene	- 1			t.
or 1,1-Dibromo ethylene	1	d. Rosendmund's reduction	_	7 li
a. Cis-1, 2-Dibromo ethylene	1	d. Rosendmind's action		1 1
THE MINIMENT	1	- Sandmeyer's reaction		1 8
TAVE ZETO dipole moment	4			1 8
Which of the following compound will	01			1
A A	- 01	Ethylacetoacetete is synthesized by		1
		Ethylaceloacetete is a	'6	
	1		<u> </u>	ł
(3	1			1 8
	1	1		8
н	1	200.	- 1	- 1
1	1	d. None	- 1	- 1
9. (i (ii)		c. C=0	- 1	- 5
	1	p C-C	- 1	ã
District to		H = 2 200004	- 1	¥
aromatic compound	1 1	of the following bond stretching	- 1	- 1
Which of the following is not an		of the follow:	- 1	ŀ
1.4/1	.8	spectrum of acetone corresponds to which of the following bond stratefine	- 1	- 1
		o suong absomition of 1210	.7	4
1		::: > !! > ! > VI .D	-	ı
7	- 1	c. iv < ii < iii		. }
	- 1		- 1	
		b. iv < i < iii > i > vi .d	- 1	- 9
1	- 1	i > ii > iii > vi . B		- 1
1		()	- 1	ì
d. 100 – 300 nm	- 1	(ii) (iii) (iv) (iv)	- 1	- 1
IIII ooo	- 1	NY ON HO	- 1	1
IIII oo	- 1		- 1	1
b. 200 – 400 mm	-		- 1	
а. 100 – 200 пт	- 1		- 1	- 1
	- 1	HO HO	- 1	- 1
electroniagnetic radiation	- 1	HO HO HO		- 1
The range of visible region in the	- 1	following compounds is		- 1
The range of visities	.9	following compagnos aniwollos	-	- 1
		The correct order of acidity of the	ςĺ	- 1
d. a phthalein dye	- 1	d. Non-polar solvents	7	
c. a tripheny direthane dve	- 1	c. Folst profic solvents	-	- 1
			1	- 1
b. an anthraquinose dve	- 1	b. Polar apropic solvents		
a. an azo dye		a. Polar solvents	1	. 1
zi ninszilA	.4	preferably used for SN2 reactions?		
		Which of the following solvent is	-	- 1
	- 1	T UAL C	4	- 1
0 0	- 1		1	- 1
OND V			1	- 1
Н	1	TIBILO SID TO IMIN OF THE		- 1
000		that is below the plan of the chair	1	- 8
[] (q	1 1	d. The anomeric carbon has a hydroxy	Ľ	80
оно Сно	1	c. All-OH groups are equatorial	1	Ą
	!		1	.#
(HI)		chair	1	
Oder (Try, 7:19 (doublet, 2H) 11 (direction)		b. Carbon 6 is above the plane of the	l	
6 1.01 (doublet, 6H), 2.16 (multiplet, 1H), 2.19 (doublet, 2H) 11.0 (singlet, 1H)		a. Forms a six membered ring	1	gi
m-8 - 425 (eldiob) [II] [0]	1	except		Ñ
16acting with Tell and action actions and	SOITS	nature. It has the following characteris		9
give the HN/MR data given below after resering with Tollent's regent	111.0	nature It has the following above.		đ
abydable gniwonor and and aven	ni 9	Roost widely occurring form of glucos		- 1
Which of the tollowing sldehydes will give the 'HNMR data give the	S Si	I. β-D-Gluc, pyranose in the chair form		ì
		.5 40		£

.81	c) $CH^{3}CH^{2}$ QH QH QH QH QH QH QH QH	-21
•	c) $b\nu$ — $C\equiv N$ H^3O_{\star} E^2O H^3O_{\star}	21
Ž	by-C-OE H ³ O,	
-91	"Which of the following reaction will not	.21
	** CHP P HPC-CH-CHPON	
·p[Which of the following compounds will -react with ammoniaeal silver nitrate - I - Butene - C - Z-Butyne - Z - Butyne - Z - Butyne - A - A - A - A - A - A - A - A - A -	.51
	'91	## STREET STREE

DEPARTMENT OF CHEMISTRY A.M.U., ALIGARH

M.Sc. Chemistry Admission Test 2012-2013

Time: 2 hours

M.M.: 200

Question Booklet

Name of the Candidate

Roll No. of the Candidate

Examination Centre

Date & Time of Examination

Deptt. of Chemists

A.M.U. Aligarb

Signature of the Candidate

Signature of Invigilator

Instructions to Candidate:

- 1. This booklet contains two sections. Section A contains 70 objective type questions each of 2 marks and Section B contains 10 short answer type questions each of 6 marks.
- 2. Candidate should chose the most appropriate answer out of four options given with each question in Section A and mark it on OMR sheet using ball point pen in the space given below the question.
- 3. Negative Marking: Incorrect answers shall result in a negative score of 25 per cent of the marks allotted to the question.
- 4. Candidate should write the answer of each question in Section B using ball point pen in the space provided below the question.
- 5. Any rough work if required can be done in the blank space available in the question booklet.
- 6. Symbols have their usual meaning.
- 7. Candidate should return the OMR sheet and question booklet.

For Office use

	INO	ORG	PHY	ANA	TOTAL
Marks Obtained			,		
Sign. of Examiner			1		

Debtt. of Chemistry

. The mats of the wave function of sp-hybrid oribitals. Derive the angle between the

Deptt, of Chemistr

Post the van Deemter equation. Plot HETP against the velocity of carrier gas and explain, briefly, the contribution of each term of van Deemter equation.

11 11

plantle bonding and uses of organotin compounds.

NO.4

M.Sc.
CHEMISTRY
2017:2018

4: no. Chemista DEPARTMENT OF CHEMISTRY

R4=30 MCH17

A.M.U., ALIGARH

M.Sc. Chemistry Admission Test 2017 – 2018

Time: 2 hours

M.M.: 200

Question Booklet

SERIES - B

Name of the Candidate

: MIRAJAHMAD ANSARI

Roll No. of the Candidate

l = σ 0 1 1 C 1 1 C 11 10

Examination Centre

7.0

Room Number

1/06/2017 &: 00 A

Signature of the Candidate

Signature of Invigilator

Instructions to Candidate:

- This booklet contains two sections. Section A contains 70 objective type questions each of 2 marks and Section B contains 10 short answer type questions each of 6 marks.
- 2. Candidate should choose the most appropriate answer out of four options given with each question in Section A and mark it on OMR sheet using Blue/Black ball point pen.
- 3. Negative Marking: Incorrect answers shall result in a negative score of 25 percent of the marks allotted to the question.
- Candidate should write the answer of each question in Section B using ball point pen in the answer sheet provided to them. Answer of each question should be on separate page mentioning clearly-Question Number.
- 5. Any rough work if required can be done in the blank space available in the question booklet.
- 6. Symbols have their usual meaning
- Candidate will have to return the hall ticket and OMR sheet to the invigilator before leaving his/her seat. They can take carbon less copy of OMR sheets with them.

2 Virtual content about pentanoic acid (A) is incorrect?	(a) The reaction between (A) and PCIs gives pentanoyl chloride (b) Treatment of (A) with ethanol yields cthyl pentanoate (c) (A) Can be prepared by reacting n-CsHuMgBr in Eto with solid CO ₂ , followed by treatment with acid.	10. Increasing stability order of the following carbocations is: Ph C Wez Me3C (1) (11) (11) (111 (2) C C (3) C III III III III C (4) C III II	(b) 11 < 1 < 11 (d) (c) 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11	12. Which of these reagents could accomplish to following read-unit.	1	14. Which one of the following statements FALSE for IR Spectroscopy (a) Higher the stretching frequiency if measuranced the alicyclic ring contains	carbonyl group. (b) Electron withdrawing substituents decreithe frequency of carbonyl group.	<u> </u>	(d) Conjugation decreases the carbol stretching frequency.	10.00k
7. During a reaction, formation of silver mirror 8 inside tube is due to:	(a) Silver nitrate (b) Silver atoms (c) Silver compounds	9. The sole product of the following reaction is OH H ₂ SO ₄ , H ₂ O HgSO ₄ Rearrange (b) (b)	HO OHO HO (2)	 Primary alcohol can be prepared from by 	(a) Direct hydration— 等时 Hydroboration—oxidation 会外Mercuration-demerceuration	13. Among following dipdethylcyclobutanes, which one can exhibit optical activity? (a) cis-1,2-dimethylcyclobutane	(h) trans-1,2-dimethylcyclobutane(c) cis-1.3-dimethylcyclobutane	=(a) trans-1,3-dimethylcyclobutane	My X Ch, X	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

,		4 (17 4)
	23. What is the potential of a half-cell consisting of zinc electrode in 0.01 M ZnSO ₄ solution: 25 °C? (E ⁰ = 0.763 V)	
	(a) 0.8221 V (b) -0.8221 V (c) 0.7039 V (d) -0.7039 V	(a) 150 °C , 2 atm (b) 0 °C, 2 atm (c) -100 °C, 2 atm (a) -100 °C, 4 atm
	 25. The mathematical relation for the first-law of thermodynemics is (3) ΔE = q - w (b) ΔE = 0 for a cyclic process (c) ΔE = q for an isochoric process (d) ΔI of these 	26. The value of commutator. [x, d/dx] is (a) x (b) d/dx (c) -1 (d) +1
` (2	27) For a <u>One dimensional box</u> of length a, in stationary state <u>n=2</u> the approximate probability of finding the particle in the central one third region will be	occurs at 0.50 cm ⁻¹ . Assuming a rigid rotator the wavenumber for the $J = 7 \leftarrow 6$ transition is
	(a) 0.4 (b) 0.2 (c) 0.3 (d) 0.1	(a) 0.88 cm ⁻¹ (b) 0.28 cm ⁻¹ (c) 0.75 cm ⁻¹ (d) 1.0 cm ⁻¹
, .	29. The mobility of chloride ion in water at 25 °C is 7.91 × 10 ⁻⁴ cm ² S ⁻¹ V ⁻¹ , How much time will it take for the ion to travel between two electrodes separated by 4.0 cm if the electric field is 20 V cm ⁻¹ . (a) 2.5 min (b) 1.4 min (c) 4.2 min (d) 84.28 min	The Joule-Thomson expansion of a real groccurs with (a) ΔU = 0 & ΔH ≠ 0 (b) ΔU ≠ 0 & ΔH = 0 (c) ΔU = 0 & ΔH = 0 (d) ΔU ≠ 0 & ΔH ≠ 0
3	31. For propanoic acid, value of Ka is 1.34 x 10 ⁻⁵ M at 25 °C. The pH for 0.01 M solution of the acid will be (a) 3.44 (b) 12	32. For weak electrolyte, straight line is obtained i graph of: \$\frac{1}{4a} \lands_{m} vs \sline \lands_{m} vs
¢	(c) 4.44 (d) 2 33. The unit of Michaelis Menton constant,	(c) \(\lambda_{m}^{2} / \lambda \lambda_{m}^{2} \) \(\lambda_{m}^{0} / \lambda_{m}^{0} \) \(\lambda_{m}^{0} / \lambda_{m}^{0} \) \(\lambda_{m}^{0} / \lambda_{m}^{0} / \lambda_{m}^{0} \) \(\lambda_{m}^{0} / \lambda_{m}^{0} \) \(\lambda_{m}^{0} / \lambda_{m}^{0} / \lambda_{m}^{0} \) \(\lambda_{m}^{0} / \lambda_{m}^{0} / \lambda_{m}^{0} \) \(\lambda_{m}^{0} / \lambda_{m}^{0} / \lambda_{m}^{0} / \lambda_{m}^{0} \) \(\lambda_{m}^{0} / \
	K _m of enzyme catalysis is: (a) Mol L ⁻¹ (b) Mol ⁻¹ L ⁻¹ (c) Mol ² L ⁻¹ (d) Mol L ⁻²	shows positive deviation from Raoult's law. implies that (a) Dissolution is endothermic (b) Dissolution is exothermic (c) ΔH _{mx} = 0 (d) Both A and B

A+8 -> T1

ons fron

u! th

[12]	6
43. An acid HA (K _a =1.0 x 10 ⁻⁴) has distribution coefficient of 10.0 between a organic solvent and water. The distributio ratio of acid HA (organic/water) at pH 3.1 would be:	material for GFC:
(a) 10.00 (b) 9.09 (c) 11.11 (d) 5.00	(a) Byvata (b) Jivinylbenzene (c) N.N'-methylenebisacrylamide (d) Epichlorohydrin
(A) 5.00 mL of a solution which is 0.01 M in Ca ²⁺ and buffered at pH 10 is titrated with 0.01 M EDTA solution. The value of K _{eff} for the reaction: Ca ²⁺ +Y ⁴⁻ CaY ²⁻ is 1.8 x 10 ¹⁰ . The concentration of Ca ²⁺ at the	in the titration of silver ion with a standar
equivalence point is: (a) 5.27 x 10 ⁻⁷ M (b) 2.77 x 10 ⁻¹³ M (c) 5.27 x 10 ⁻¹⁶ M (d) 2.77 x 10 ⁻⁶ M	
47. The transmittance of a solution was found to be 10% when measured at 455 nm in a 1.00 cin cell. The absorbance of this ஃlution at 455 nm in a cell with path length of 2.0 mm would be:	48. In a chromatographic analysis of lemon oil, peak for limonene has a retention time of 10.0 min with a baseline width of 0.70 min. Y-Terpinene elutes at 10.9 min with a baselir width of 0.80 min. The resolution between the two peaks is:
(a) 0.1 (b) 0.2 (c) 2.0 (d) 0.5	(a) 1.20 (b) 1.10 (c) 1.06 (d) 1.30
incorrect regarding HSAB concept?	 Among Pr³⁺, Sm³⁺, Dy³⁺ and Yb³⁺ ions, white one would be eluted first in ion exchange chromatography.
(a) hard – hard interactions are electrostatic This soft-soft interactions are covalent (c) Agl, is stable while AgF; is unstable (d) [Co(NH ₃) _x F] ^{2*} is unstable while [Co(NH ₃) _x I] ^{2*} is stable	(a) Pr ³ - (b) Sm ³ - (c) Dy ³ - (d) Yb ³ -
The cross linking unit used in designing of Silicones is	52) Which of the following pairs involves ligand metal charge transfer (LMCT)
(a) Me ₂ SiCl ₂ (b) MeSiCl ₃ (c) Me ₃ SiCl (d) Me ₄ Si	(a) [Fe(CN) ₆] ⁴ and [MnO ₄] (b) [Fe(CN) ₆] ³ and [MnO ₄] (c) [MnO ₄] and [IrBr ₆] ² (d) [Cr(CO) ₆] and [MnO ₄]

3. Correct order of Lewis <u>ucid_character</u> of 54 boron trihalides is 7 feel WWE + 8 mails	. Which one of the following complexes is optically active;
(c) BCl ₃ >BBr ₃ >BCl ₃ (d) BF ₃ >BBr ₃ >BCl ₃ (e) BCl ₃ >BF ₃ >BBr ₃ (fixed by BBr ₃ >BCl ₃ >BF ₃	(a) [Co(NH ₃) ₄ Cl ₂] (b) [Co(NH ₃) ₂ Cl ₄] (c) cis-[Co(en) ₂ Cl ₂] (d) trans-[Co(en) ₂ Cl ₂]
Ionic radii of high spin Fe ²⁺ in hemoglobin is	66. Na*/K* ATDARE T
(a) 78 (pm) (b) 61 (pm) (c) 69 (pm) (d) 65 (pm)	(a): 3Na* out of cell and 2K* into the cell (b): 3Na* out of cell and 3K* into the cell (c): 2Na* out of cell and 3K* into the cell (d): 3Na* out of cell and 5K* into the cell
57. The complex will show maximum crystaff field spletting is	58 Coloured nature of [Ti(H ₂ O) ₆] ³⁺ is due to
(a) $[Co(H_2O)_6]^{2+}$ (b) $[Co(H_2O)_6]^{3+}$ (c) $[Rh(H_2O)_6]^{3+}$ (d) $[Fe(H_2O)_6]^{2+}$	 (a) H₂O ligands (b) Charge Transfer (c) Intramolecular Vibrations (d) ²T₂g → ²Eg transition
59. High spin d ⁶ complex is	60. Four units of hemoglobin are held together by
(a) [Co(H ₂ O) ₆] ²⁺ (b) [CoF ₆] ³ · (c) [Fe(CN) ₆] ³ · (d) [Ni(NH ₃) ₆] ²⁺	(a) Covalent bonds (b) Salt bridge only (c) Hydrogen bond only (d) Hydrogen bond and salt bridge both
61. False statement about crystal field theory is	62. Decreasing order of energy of term symbols is
(a) It considers ligand as point charge (b) It does not consider covalent bonding between metal and ligand orbitals (c) It gives accurate explanation about charge transfer bond (d) It considers repulsion between metal and ligand electrons	(q) ${}_{3}D > {}_{4}D > {}_{1}C > {}_{1}D > {}_{2}C > {}_{2}D > {}_{1}C > {}_{2}C > {}_{3}C > {}_{4}C > $
63. A substance behaves like simp paramagnetic above Neil Temperature b magnetic moment decreases below it. To substance can be	he is t ₂ g ² eg ³
(a) Ferromagnetic (b) Diamagnetic (c) Super magnetic (d) Anti ferromagnetic	(a) Laport forbidden (b) Spin forbidden (c) Laport and spin forbidden both (d) Charge transfer

d 66. Correct relationship for magnetic susceptibil
(a) B = H +4 π l (b) B = H - 4 π l (c) B = H +4 π 2l (d) B/H = l - 4 π l
(a) 25 (b) 21.5 (c) 80 (d) 78
70 Which one of the following is a natural dye (a) Methyl orange (b) Alizarin (b) Malachite green (d) Martius yellow

Section B

- 1. 30 mL of an aqueous solution of 0.20 M butyric acid is shaken with 20 mL ether. After the layers are separated it is determined by titration that, 0.4 moles of butyric acid remains in the aqueous layer. Calculate the distribution ratio and the percent extraction.
- 2. Explain Dewar and coworkers theory of bonding in phosphazene complexes
- 3. How myoglobine binds with 02? Prove the relation

$$f = \frac{KP^n}{1 + KP^n}$$

- 4. Show crystal field splitting picture of $[Ni(CN)_4]^2$ and $[Ni(NH_3)_4 Cl_2]$ and label the orbitals.
- 5. (a) Nucleophilic substitution occurs readily in alkyl halides, whereas in alcohols it occurs in presence of strong acids as catalysts. Explain.

(b) What is the difference between epimers and anomers? Explain with examples.

- 6. Pyridine, being aromatic like benzene, can undergo nucleophilic substitution/easily while benzene cannot. Explain.
- 7. Indicate what ¹H NMR spectra would you expect from the following compounds:
 - (i) n-Propylbenzene
 - (ii) n-Butane
 - (iii) neo-pentane

- 123 452 3dR
- 8. Calculate the coefficients of sp²-hybrid orbitals.
- 9. Normalize the wave function:

$$\Psi = N \exp (i\phi)$$
 where $0 \le \phi \le 2 \pi$

 The force constant of ¹H¹⁹F molecule is 970 N/m. Calculate the fundamental vibrational frequency and zero-point energy. 400 Chemistry

A.M.U. 'ALIGARH

M.Sc. Chemistry Admission Test 2011-2012

11-1

Time: Zirrois

M.M.: 200

Question Booklet

Name of the Candidate

Roll No. of the Candidate

Examination Centre

Date & Time of Examination :

CEMINAR LIBRARY
Deptt. of Chemister
A.M.U.: Alisarb

Signature of the Candidate

Signature of Invigilator

Instructions to Candidate:

- 1. This booklet contains two sections. Section A contains 70 objective type questions each of 2 marks and Section B contains 10 short answer type questions each of 6 marks.
- 2. Condidate should chose the most appropriate answer out of four options given with each question in Section A and mark it on OMR sheet using HB pencil or ball point pen in the space given below the question.
- 3. Negative Marking: Incorrect answers shall result in a negative score of 25 per cent of the marks allotted to the question.
- 4. Candidate should write the answer of each question in Section B using ball point pen in the space provided below the question.
- 5 Any rough work if required can be done in the blank space available in the question booklet.
- 6. Symbols have their usual meaning.
- 7. Candidate should return the hall ticket, OMR sheet and question booklet.

For Office use						; ;
	INO	ORG	PHY	ANA	TOTAL	1
Marks Obtained						1
Sign. of Examiner		-				1

Depti. of Chamstry

A.M.U., Aligarb

12 1/2

11-3 22. In which case of the following, formation of Greenard reagent will be most difficult of CII, CII, CII, CI the number of isomers produced by can be produced by calland scap datable scap rely manaparent scap rely detergent square planer complex of the type slabed] can be given as (ii) [Co(NH),CL] (b) [Co(NH),CL] (c) [Co(en)-CL] (d) [Co(en)-CL]Bi (b) CH₂=CH=CH₂-Cl (a) 2 (b) 3 (c) 6 (d) None (c) CH: CH=CH=CI Which one of the following statemen about ψ^2 is not true? Which of the following is the major product when quinoine is treated with H₂SO₄SO₃ at 100 °C Which one of the following molecules has three- 16 Which of the following is most acidic? at the two electron (3C-2c) o bonding? (a) ψ² is proportional to electron density
 (b) ψ² may be positive, negative or imaginary
 (c) If ψ² is high the probability of linding the electron is high
 (d) ψψ² is used for ψ² to avoid imaginary value. ran Neby (b) Neby (c) Neby (d) B-Hz (TÜVON (_) In Sheehan method for the synthesis polypeptides from amino acid, aminogroup is protected by 17 Which one of the following expression corresponds to the Roschow electronegativity scale.³ oxidation of glucose with nitric acid gives Aufbau rules for electronic configuration of elements is not violated in (a) Gluconic acid (b) Oxalic acid (c) Glucaric acid (d) Lorgue acid (a) henzyloxycarbonyl group
 (b) sulphonyl group
 (c) phthalyl group
 (d) t-butexy azidoformate group (a) Main group elements(b) d-block elements(c) Lanthenides(d) Actinides 28. Which of the following acids decraboxylates on heating? (a) Succinic acid(b) Malonic acid(c) Phthalic acid(d) Maleic acid (a) three signals as doublet, singlet and singlet (b) two signals both as singlets (c) two signals as singlet and quartet (d) four signals. Vax singlets I as quartet (d) 1 3.59 Z + 0.744 When ethanol is heated with concentrated H₃SO₄, a gas is produced. Which of the following compounds is formed when this gas is treated with Br₂ in CCl₁? The following reaction 119 Select correct order of electronegativity of 20. The compound having maximum Lattice CallsC=O Na (a) 1-Bromo-2 chloroethane (b) 1,2-Dibromoethane (c) 1,1,2,2-Tetrabromoethane (d) Bromoethane is tastest when Y is (a) Lif (b) Naf (c) KF (d) CsF (n) Si - P - C - N (b) Si - P - C - N (c) Si - P - C - N (d) Si - P - C - N (a) Cl . . (b) NH, (d) OCOC H, EMINAK LIBKAR Depti. of Chemistre

9	
Contraction	32. B-Hyroxycarbonyl compound is
· · · · · · · · · · · · · · · · · · ·	obtained by the action of NaOH on
•	(9) 027 () CHO
	(/ () / ()
called as	(h) CHO
ca Free real in sugn)	(e)
(b) Claren rearrangement	CHO -
6) 3 in the rearrangement	
of) Holmmu rearrangement	(d) CI CHO
On intration of andline with a mixture of nitric ac	1 24 7
and sulphuric acid, the major product is	Then is dised to prepare a
major product is	β-ketoester from ethyl acetate is known
(a) o-Sitroaniline	as (a) Michal addition
thi m-Nunaniline	(a) Michel addition (b) Cannizzaro reaction
(c) p-\sitroaniline	(c) Claisen-Schmidt reaction
rdi None of these	(d) Classen condensation
The following reaction fallow	26 11
	hydrocarbons are possible for C ₈ H ₁₀ .
NH,	y assessment and possible for Child.
	(a) 3
Cat Sch mechanism	(b) 4
thi Sad mechanism	(c) 5
to 1 finination - addition mechanism	(a) 6
(d) S ₃ t mechanism	
The combustion of one mole of propane produce	s 38. Enantiomers have
how many moles of H ₂ O?	and the same of th
	(a) different physical properties
(ii) ?	(b) identical biological properties
abr 3	(c) identical chemical properties
1011	(d) different chemical properties
	1 40. The R/S notation to chiral carbon C-2
BH-H ₂ O and alkali provides	and C-3 in the following structure will
Cr. Butanal	be
(5) Butanal (5) Butanone	ÇII ₁
(C) 2-Butanol	II CI
(d) 1-Butanol	CI
- Common	Č ₂ II ₅
	(a) 2S3S
· ·	(b) 2R3R
	(c) 283R
	(d) 2R3S
段.	(3) 21.70

.11-7

by enopy it is an ismaximum in

 $\operatorname{dist} : \operatorname{CO}_2(s)$ $((1,1,1,1) \rightarrow \text{SH}(0) \rightarrow 2\text{NH}_1(\mathbf{g})$ · !(!! (") · !» (") , 2!!! (g)

some formers the energy associated with

cat one molecule to one ob don Sympadic number of photons rdi Laraday number of photons

- Water carrying impurities is purified by addition of 56. Lyophilic sols are: potash alum, Ali of the potash alum causes:
 - (a) peptisation of negatively charged turbidity
 - (b) coagulation of negatively charged turbidity
 - (c) peptisation of positively charged turbidity
 - (d) coagulation of positively charge turbidity.

- [52] What function of [A], plotted against time, will give a straight line for all second-order reaction:
 - $|\Lambda|$ (a)
 - (b) $|A|^2$
 - (c) log [A]

(d)

54. The following graph

Represents the variation compressibility factor, Z, versus P for three real gases A, B and C. Identify the incorrect answer:

- (a) For the gas A, a = 0 and its dependence on P is linear at all pressure.
- (b) For the gas B, b = 0 and its dependence on P is linear at all pressure.
- (c) For the gas C, neighter a nor b is zero. By knowing the minima and point of intersection, with Z=1, a , and b can be calculated.
- (d) At high pressure, the slope is positive for all real gases.
- - (a) irreversible sols
 - (b) they are prepared from inorganic compounds
 - (c) coagulated by adding electrolytes
 - (d) self stabilizing

1		8	
'n loon da 'm ne erigi	menereci statemen	about the	66. When 50.0 ml of an aqueous solution
E tensita e necontado	riors have definitive va tos have an assignable trors are of the san	alue cause ne sign and	is shaken with 50.0 ml of ether 199 of the fron is extracted. What is distribution ratio?
· Province is n · trois	namly affected by the	e systematic	(a) 9 9 (b) 10.0
he sells mad in	UV Spectrophotomy		(c) 99.() (d) 11.9
grad Stanker	, sa sphotomet	er are made 6	(d) 11.9 i8, A certain solution absorbs 90% of the incident radiation in 1.0 cm cell at 5 nm. What is the above.
en (11.111)			nm. What is the absorbance of the
o polystyrene drock salt		. 1	(a) 0.90
	# 1		(b) 0.10 (c) 1.0
no The abundance of green house gaves is	roposphene O, as c	000 of the 70	8.0 (b)
(a) 0,03 pom		ine of the 70	The numerical value in decima numbering system of the followin binary number 1101 will be
(b) 0.47 pph (c) 1-74 ppm			(a) 13
(d) 0.26 ppin			(b) 22
· • · · · · · · · · · · · · · · · · · ·			(c) 101 (d) 110

Dopte of comments