
A.M.U, Diploma Engg. 2016-2017	(c) Oxygen (d) Aluminium	(c) Same physical properties
2. A constant force of 12N is exerted for (b) Potential energy	15. How many electrons are present in the outermost shell of carbon	(d) Same structure 23. In the context of redox reactions the
object will be: 7. Uncontrolled nuclear chain reaction is	(c) 12 (u) 4 16. Which of the following method is not	substance is known as : (a) Oxidation (b) Dehydration
(a) 4 m/s (b) 2 m/s (c) 0.5 m/s (d) 16 m/s	used for disinfection:	
	(a) O V Insuration (b) Chlorination	24. The micelles formed in soap stay as: (a) Colloid (b) True solution
ilding 20 m fone by the	Osmosis Nano silver	(c) Suspension (d) Precipitate
	17. Butanone is a four compound with	mass of a compound are CH ₂ Oand
(c) 19600J (d) 16900J	functional group:	180g respectively. What will be the
3. The radius of a planet is double that (c) 5.00 mole (d) 50.00 mole	(a) Carboxyric acid (b) Aldehyde	(a) C ₂ H ₁₀ O ₂ (b) CH ₂ O
9. Isotopes of an ele	Ketone	
	water contains 20drops,	
an ve?	of water is :	(a) E. Goldstein (b) E. Rutherford (c) J.J. Thomson (d) Neils Bohr
(a) $v_{\mu} = \frac{1}{2}v_{\mu}$ (b) $v_{\mu} = v_{\mu}$ 10. Rutherford's alpha-particle scattering	023	27. The electron distribution in an
(c) $v_r = \frac{3}{2}v_r$ (d) $v_r = 2v$ discovery of:	(b) 1.370×10^{-10} (c) 1.673×10^{21}	aluminum atom is: (a) 2, 8, 3 (b) 2, 8, 2
th a lift-off mass on non	(d) 4.346 ×10 ²⁰	
kg is blasted upwards with an initial (c) Proton	electron affinity:	28. ABC and DDE are two equilateral triangles such that D is mid-point of
is the		BC and E is mid point of AB. Ratio
(a) 2.96×10 ³ N (b) 2.96×10 ⁴ N Valancies of a number of the can exhibit	(c) Br (d) I 20. The ion of an element has three	of areas of triangle ABC and BDE is: (a) 2:1 (b) 1:2
went around the sun twice as fast as 12. The removal	atom is 27 and the number of	29. ABCD be a square of side 14 cm is made of namer sheet Two half
	electrons in the ion?	circular disc each of radius 7 cm are
(c) Reduction	(a) 13 (b)10 (c) 14 (d) 16	cut and separated. The area of remaining part is:
(a) $\left(\frac{1}{5}\right)$ (b) $\left(\frac{1}{3}\right)$ 13. Modem periodic law is based on:	leev's peri	(a) 196 cm^2 (b) 154 cm^2
$\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$	(a) Atomic numbers	of a
(\overline{z}) (\overline{z}) (\overline{z})	(b) Atomic masses	ratio 5:3:7. Then triangle is: (a) An acute angled triangle
cell the energy from sun is 14.	(d) Occurrence of elements	(b) An obtuse angled triangle
gy . the earth crust :	22. Diamond and Graphite have: (a) Different physical Properties	(c) A right triangle (d) An isosceles triangle
	(b) Different chemical properties	
Alig Sure Success	2	8

41. If the line segment joining the points 44. In a triangle, if square of one side is 42. The polar coordinates of the point 46. Two tangents TP and TQ are drawn .. (d) None of the above 'O' is the centre of a circle: If tangent equal to sum of the squares of other angle θ at the origin, then $\cos \theta$: P (a, 2a) and Q (2b,b) substend an (c) $ab = \sqrt{bc}$ PQ=12 cm and BQ=8cm then chord (c) None angle is of 90° (b) Angle opposite the smaller side is 90° (a) Angle opposite the longest side is 90° $(a^{2}+b^{2})x^{2}-2(ac+bd)x+c^{2}+d^{2}=0$ external point T. the <PTQ equals: to a circle with centre O from has equal roots, then: (c) $\frac{1}{2} < OPQ$ 0 (d) $ab = \sqrt{cd}$ (b) $2\sqrt{3}, \frac{\pi}{6}$ (b) $\frac{4a}{5b}$ (d) $\sqrt{3}, \frac{\pi}{6}$ (b) 4 √5 cm (b) ad=bc (d) - 3 (d) 3<0PQ (b) 2<OPQ (d) 18 cm equation 0 47. Three cubes of sides 8cm, 6 cm and 1 49. 48: 50. 51. In rhombus ABCD, which of the 53. In the figure, AB CD. The bisector 52. In a single throw of two dice, the Two circle of radius R and r touch The parallelogram circumscribing a (a) 86° The straight lines AB and (a) R - r (c) 2rR equal to: intersect one another at the point O. if (a) 480 cm cm are melted to form a new cube. (c) $\frac{36}{5}$ probability of getting a total of 8 is: (b) $AC^2 + BD^2 = 2AB^2$ direct common tangent. Then PQ² is each other externally and PQ is the circle is a : (c) 94° <AOD is: <AOC + <COB + <BOD=274°, then (c) 490 cm The surface area of the cube is: of the transversal EF intersect at P. of the interior angles on the same side (a) $\frac{1}{36}$ (a) $AC^2 + BD^2 = AB^2$ (c) Rectangle then <GPH is: (d) 2(AC²+BD²)=3AB² (c) $AC^2 + BD^2 = 4AB^2$ (a) Square following is true: (b) 486 cm (b) R+ r (d) 4rR °06 (q) (d) 500 cm (b) Rhombus (d) 137° (b) 7 (d) Trapezium

(d) None of these CD Scanned with CamScanner

ē

A. To	(d) Greater than ¹ /40f the area of the
(c) 90° (d) 110°	
54. If the perimeter of a rectangle and a	60. An exterior angle of a triangle is 105°
square each is equal to 80 cm and the difference of their areas is 100 sq.	and its two interfor opposite angles are equal. Each of these angles is:
cm. The sides of the rectangle are:	(a) $37\frac{1}{2}^{\circ}$ (b) $52\frac{1}{2}^{\circ}$
(a) 35 cm, 15 cm (b)30cm,10cm (c) 25cm, 15 cm (d) 28 cm, 12 cm	
55. For a triangle ABC, which of the	(c) $72\frac{1}{2}^{\circ}$ (d) 75°
following is true? (a) $BC^2 - A R^2 = A C^2$	61. The value of tan23°tan42°tan48°tan67°
(b) AB-AC=BC	is:
(c) (AB-AC)>BC	$(a) - \frac{1}{2}$ (b) $\frac{1}{2}$
	1.1.1
QPR and PT L QR. Then <tps is:<="" p=""></tps>	(4) I (u) I (2) $f(1+tan \theta + sec \theta)(1+tan \theta)$
₹°	θ -cosec θ) is:
	(a) 0 (b) -1
	figure if P
	~QRS=130°, then <pqr equal="" is="" td="" to:<=""></pqr>
(a) $\frac{1}{2}$ (< Q-< R) (b) $\frac{1}{2}$ (< Q+< R)	
(c) (<	1100 1300
37. The diagonals of a cyclic quadrilateral intersect of the cyclic	~
the circle containing the quadrilateral.	(a) 40° (b) 50°
(a) Parallelogram (b) Rhombus	64. The point A (x,y) which is equidistant
58. For the value 30, 5,21, 42, 13, 10, 27	a, a+b) satisfies the relation:
(a) 17 (b) 18 (c) 19 (c	
(c) 19 (d) 21	65. A horse is tied to a here of a
9. From a square sheet of paper, a circle with maximum provide the state of the sta	of a square shaped grass field of side
out. The area of the remaining portion	area of that part of the field in which
(a) Equal to the area of the similar	75 75 75
(b) Greater than half the area of the	(a) $\frac{7}{4}$ run ² (b) $\frac{225}{225}$ rm ²
square	
square	(d) $\frac{12}{4}$ mm ²
lig Sure Success	

69. 68. 67. If $2\cos^2\theta + \sin\theta = 2$ then θ is: 66. Area of a sector of angle p° of circle 72. 70. 73. 1. Charles Dikens is the author of: (a) $\frac{p}{180} \times 2\pi R$ (c) $\frac{P}{360} \times 2\pi R$ Zik virus was discovered in which Vaccine for small pox was discovered Who among the follwong was known with radius R is: (c) 0° or 45° as "Frontier Gandhi": country? (a) 0° or 15° by: (c) Mohammad Ali (a) Abul Kalam Azad (c) Zaire (a) Uganda Who of the following is the creator of (a) Edwered Jenner (d) Khan Abdul Ghaffar (b) Shaukat Ali Who of the following has been Star Wars? (c) Twelfth Night (c) Alexander Fleming (b) Louis Pasteur honoured with the 2015 Jnanpith (a) Catherine Winder (d) A Divine Comedy (b) The old Bachelor (a) Great Expectations award? (d) Lawerence kasdan (c) George Lucas (b) Scott Murphy (d) Robert Bruce (a) Ramakant Rath (d) Shamim Hanafi (b) Raghuveer Chaudhary (c) Leeladhar Mandloi (d) $\frac{p}{720} \times 2\pi R^2$ (b) $\frac{P}{180} \times \pi R^2$ (b) 0° or 30° (d) Togo (d) 0° or 60° (b) Keny 75. 74. 76. the:

82. Who was the mother of Fatima 81. Who was famous with the title of 79. Muslims first settled down in India in 78. "Asbabe-Baghaate Hind" was written 80. Hazrat 77. Notes on which denomination has the Tennis player married first at the age of: The National Game of Russia is: The Government of India (GOI) has (a) 20 release of new LPG connections: (R.A.)? (c) 25 on them?: portrait of Mahatama Gandhi printed (c) Romania (a) Russia belongs to: (c) Smile (a) Sulabh launched which scheme for online (a) Hazrat Khadija "Ameen" in Makkah: (c) 8th century (a) 6th century (c) Meer Taqee Meer (b) Sir Mohammad Khan (a) Abul Kalam Azad (a) 1000 rupee (c) Chess (a) Tennis (d) Hazrat Ayesha (c) HazratZainab (c) Hazrat Muhammad (SAW) (b) Hazrat Maria (b) Hazrat Abu Bakr Siddiq (R.A) (a) Hazrat Umaer Khattab (R.A) (d) Sir Syed Ahmad Khan (c) 100 rupee (d) Hazrat Ali (RA) Mumhammad (b) 7th century (d) 9th century (d) France (b) 24 (d) All of the above Novak Djokovic (d) 30 (b) Saral (d) Sahaj (d) Base Ball (b) 500 rupee (b) Serbia (b) Badminton (PBUH)

103

Alig	91.	90.	89.		87.	86.	85	83.
Alig Sure Success	(a) 100 Hz (c) 200 Hz (c) 200 Hz An electric lakes a cun developed i	(c) $\sin^{-1} \frac{1}{\sqrt{2}}$ What will alternating changes aff	A ray of The ang the angle the angle	is passed wavelength the liquid is The refractiv (a) 1.50 (c)1.33	East India first factory (a) 1600 (c) 1608 A ray of lig	Aligarh established University: (a) 1940 (c)1900	Madinah: (a) Cave Hi (c) Syria Shahnama v (a) Khusrau (c) Firdausi	The entire q (a)13 years (c) 20 years The place v (SAW) sta
ccess	 (a) 100 Hz (b) 50 Hz (c) 200 Hz (d) 500 Hz An electric iron of resistance takes a current of 5 ampere. takes a current of 5 ampere. developed in 30 s will be: 	affe Ni 너-	21. 00	is passed through a liquid. wavelength of light measured the liquid is found to be 450 × 1 The refractive index of liquid is: (a) 1.50 (b) 1.45 (c)1.33 (d) 1.44	lia ory	ty:	Madinah: (a) Cave Hira (b) Cave (c) Syria (d) Quba Shahnama was written by: (a) Khusrau (b) Qasin (a) Firdausi (d) Abull	The entire quran was revealed in: (a)13 years (c) 20 years (d) 23 y The place where Prophet Muhan (SAW) stayed while migratin
	(b) 50 Hz (d) 500 H of resistanc of 5 ampere s will be:	(d) si be the current if r every 0.01	hasses from neidence is x of glass raction wi (b) sin	through a liquid of light measured found to be 450 × : ve index of liquid is (b) 1.45 (d) 1.44	Company established its in Surat in the year: (b) 1605 (d) 1613 ht of frequency 5×10 ⁴ Hz	slim Unive in the y (b) 1920 (d) 1875		an was re ere Proph d while
			(b) $\sin^{-1}\frac{\sqrt{2}}{3}$	a liquid. measured i be 450 × 1 of liquid is: 1.45 1.44	establ 1 the ye 605 613	University le year 1920 1875	(b) Cave Thay (d) Quba ritten by: (b) Qasim (d) AbulFazal	revealed (b) (d) (d) het Mu
	20 ohms The heat	ancy of direction	$\frac{15^{\circ} \text{ and the}}{1.5. \text{ Then}}$	9,5	blished its year: y 5×10 ⁴ Hz	ly was	Thawr n Fazal	was revealed in: (b) 10 years (d) 23 years Prophet Muhammad while migrating to
					N S	6 6		0 4
	98.	97.	96	95		94	56	92

		5	 ι.	2
(d) Natural gas Which of the following is not an example of a bio-mass energy source?	 (c) Real, 28 cm (d) Virtual 28 cm Which of the following is a non-renewable source of energy? (a) Flowing water (b) Sun (b) Sun 	 (c) Etnane (d) Nitrogen (d) Nitrogen An object of 7 cm height is placed at a distance of 12 cm from a convex lens of focal length 8 cm, find the nature and height of the image. (a) Virtual, 14 cm 	n/s ²) m/s (b) 346 m/s m/s (d) 342 m/s erage speed of a bicyclist first 5 km with a spe and next 5 km with spe	 (a) 20,000 joule (b) 15,000 joule (c) 25,000 joule (d) 10,000 joule (c) 25,000 joule (d) 10,000 joule (c) 25,000 joule (c) 25,000 joule (d) 10,000 joule (c) 25,000 joule (c) 25,000 joule (d) 10,000 joule (c) 25,000 joule (d) 10,000 joule (d) 10,000 joule (e) 20,000 joule (e) 20,000 joule (f) 10,000 joule (f) 10,000 joule (g) 10,00

Alig Sure Success

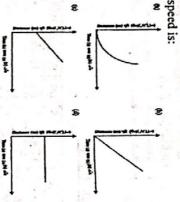
105

.

81. (c) 82. 91.(b) 92.	b1. (d) b2 71. (a) 72		-	21: (b) 22. 31. (d) 32.	1-1	1. (a) 2.	1.1.1	 (a) Wood (b) Gobar gas (c) Nuclear energy (c) Nuclear energy (d) Coal (d) Coal (d) Coal (d) Coal (d) Coal (d) Coal (e) Nuclear energy (c) Plastic
82. (a) 92.(b)	62. (d) 72. (c)	52. (c)	42. (c)	(c) (a)	12. (c)	ত		od lear ei lear ei l of th make er
83. (d) 93.(b)	03. (c) 73. (b)	53. (c)	43. (b)	23. (a) 33. (b)		3. (d)		a le
84.del. 94.(c)	74. (U)	54. (b)	44. (a)	24. (a) 34. (c)		4. (c)	ANS	y ollowing cannot ns? (b) Glass (d) Clay
85. (c) 95.(a)	75. (c)	55. (d)	45. (a)	23. (c) 35. (a)		5. (c)	ANSWERS - 2016-2017	not be
86. (b) 96. (b)	76. (b)	56. (a)	46. (b)	20. (C) 36. (d)		6. (c)	- 2016-;	100. Tv ann (a) (b) (c) (d)
87. (c) 97.(d)	77. (d)	57. (c)	47. (b)	27. (d) 37. (d)	17. (c)	7. (b)	2017	 100. Twinkling of stars is due to atmospheric : (a) Dispersion of light by wat (b) Refraction of light by di layers of layers of refractive indices (c) Scattering of light by dust p (d) Internal reflection of light
88. (c) 98. (c)	78. (d)	58. (c)	48. (a)	20. (C) 38. (b)	18. (c)	8. (a)	a.	inkling of stars is du ospheric : Dispersion of light by Refraction of light t layers of layers refractive indices icattering of light by c luternal reflection of l
89. (b) 99. (d)	79. (b)	59. (c)	49. (b)	29. (b) 39. (b)		9. (c)		Syan Tre
90. (b) 100.(b)	80. (c)	60. (b) 70 (a)	50. (d)	40. (a)		10. (a)		droplets crent varying rticles clouds

. . . 0/

Scanned with CamScanner


Scanned with CamScanner

<u>Diploma Engg. 2015-2016</u>

7.

speed is: The nature of the distinct-time graph for a car moving with non-uniform

-

A car accelerates uniformly from 18 (a) 18 km/hr. to 36 km/hr in 5 seconds. The time is (is km) : distance covered by the car in that (b) 36

2

- boat will be: When a sailor jumps from a boat in (c) 0.0375 forward direction, the direction of the (d) 37.5
- (a) $(mv)^{2}$ (a) Forward The momentum of an object of mass 'm' moving with a velocity 'v' is: (c) Twisted (b) mv* (d) None of these (b) Backward
- S 0 (c) mv When a body is immersed fully or weight on the earth is: If mass of an object is 10 kg. (d) Half the weight of the fluid (c) Half the weight of the body (b) Weight of the fluid (a) Weight of the body upward force that is equal to the: partially in a fluid, it experiences an (c) 98 N (a) 10 N (d) -mv² 2 N (d) 10 kg (b) 9.8 N =
- Alig Sure Success

(a) 156.4 If the velocity of the car of mass KJ)? (c) 52.5 60 km/hr, the work done will be (in 1500kg is increased from 30 km/hr to (a) 0.6 consumed in one day by the bulb are: 6 hours per day. The units of energy An electric bulb of 60 W is used for (b) 160 (d) 208.4 (b) 0.36

00

(c) 6 ((a) Determine the depth of sea Stethoscope is used to: (d) 360


9.

- (c) Listen sound with the body (b) Determine the sound waves
- Sound waves with frequencies below the audible range are termed as: (a) Ultrasonic (d) Listen the sound in water (b) Infrasonic

10.

In figure, where the image can be (c) Noise (d) Pleasant

F

(c) AtF_2 (d) $At \ 2r_2$ find the power of concave lens of (a) AtF₁ (b) Between F2 & 2F2

12

- 13. (c) -0.2 focal length 2m. (a) +0.5 (b) -0.5 (d) +0.2
- The splitting of light into component colours is called? A person with myopia can see only: (a) Dispersion (b) Spliting (c) Refraction (d) Tyndall its

14

(b) Distant objects (a) Nearby objects (c)Neither nearby nor distant objects

		(c) Copper sulphate solution	
(d) Ca(OH) ₂		(a) Salt Solution	
(c) Marble has no formula		Tyndall Effect?	
(b) CaCO ₃			23.
		(d) Kinetic energy first increase then decrease	
	2	(c) Kinetic energy remains constant	
(d) Neutron		(b) Kinetic energy decreases	
(c) Proton		 (a) Kinetic energy increase 	
(b) Electron		solids:	
(a) Atomic nucleus			22.
discovery of:		(c) Gas (d) Same in all	
		a	
Rutherford's alpha	10	Kinetic energy is	21.
		(c) Iron	
23×10 ²³		per	
		ar cell	
	27		20.
23	20	(c) Nuclear energy(d) Coal	
		(a) Wood (b) Gobar gas	3
(a) 16 (b) 8		f bio-n	
	5	Which of the following is not an	19.
	28	(d) Electrical energy into kinetic energy	
(d) Isotope of oxygen		(c) Mechanical energy into kiletic circley	
(c) Isotope of Iodine		(b)Mechanical energy into electrical carries	
(b) Isotope of uranium		(a) Ninetic energy into incommon one a	
(a) Isotope of cobalt		(a) Vinatic energy into mechanical energy	10.
treatment of cancer?		Ś	0
Which of the following is used in the	21.	(c) Generator (d)d Motor	
(c) (NH3)204 (u) (INIH)204	ß	(a) Galvanometer (b) Ammeter	
		is called:	
ann	20.	Device used for producing electric	T
(d) Oxygen-12 isotope	2	(c) v 1 (^{cr}) R	
(c) Oxygen- 14 isotope		$(a) V^2 (b) (b) \frac{V^2}{V}$	
(b) Hydrogen		(a) IR ² (b) I ⁻ R ⁻	
(a) Carbon-12 isotope			
atomic masses?		represent electrical power in a	
standard reference for measuring		ollowing	16.
Which of the following is select as	25.	-	
(c) Foam (d) Emulsion			
(a) Aerosol (b) Gel		+	
type of colloid will be:			
dispersed medium is solid then the			
If the dispersed phase is liquid and	24.	The symbol of closed switch in	n.
(d) Starch solution		(d) None of the above	

3	The products of respiration process	(d) Increases in moving from right to left	
		75	(a) 40°
	(a) $6CO_2 + H_2O + energy$ 4	41. The solution $\frac{1}{12}$ is:	(c) 60°
	(b) $4CO_2 + 2H_2O + energy$	73	48. In figure,
	(c) $9CO_2 + 3H_2O + energy$	(a) $7^{\frac{2}{15}}$ (b) $7^{\frac{1}{15}}$	
	(d) $6CO_2 + 6H_2O + energy$		<rpt=95< td=""></rpt=95<>
33.	The colour of litmus solution is:	(c) 7 15 (d) 7 15	is:
		any ra	
	le	between any two given rational	
34.	The bleaching po	numbers?	
	as:		R
		nite .	
2		43. Which of the following statement is	
	(a) Plastic (b) Graphite	(a) Even whole number is a noticed much	(a) 40°
	(c) Glass (d) Carbon	(b) Every integer is a rational number	(c) 60°
36.	Which of the following pairs will	(c) Every rational number is an integer	49. If any t
	give the displacement reaction?	(d) Both (a) and (c)	pair of
		44. The expanded form of (4a-3b-2c) ² is:	triangie a
	(c) FeSO ₄ solution and silver metal	$(a) 16a^2 + 9b^2 + 4c^2 - 24ab + 12bc - 16ac$	(b) ASA
~.	(d) AgNO ₃ solution and copper metal	$(b)^{16a^{+}+9b^{+}+4c^{+}-24ab-12bc+16ac}$	(c) SAS
37.		(c) $16a^2 + 9b^2 + 4c^2 + 24ab - 12bc - 16ac$	(d) SSA
	C ₂ H ₆ has:	(d) $16a^2 + 9b^2 + 4c^2 - 24ab - 12bc - 16ac$	50. If the a
		45. Evaluated form of (998) ³ hy using	the ratio
	The state state state		of quadr
	(d) 9 covalent bonds	(a)997002999 (b) 994011992	(a) 30°, (b) 40°
38.	Butanone is a four carbon compound		(c) 48°
	with the functional group of:	46. The linear equation that converts	(d) 36°.
	(a) Carboxylic acid	Colorini in Fahrenheit (F) to	51. Which
	(b) Aldehyde	Ceisius is:	true?
	(c) Ketone	(a) $F = \left(\frac{5}{2}\right)C + 32$ (b) $F = \left(\frac{5}{2}\right)C - 32$	(a) A ci
5		$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right)$	equa
39.		(c) $F = \left(\frac{9}{5}\right)C - 32$ (d) $F = \left(\frac{9}{2}\right)C + 32$	(b) If a
	depends on the formula:	47. In the following e_{1} (5) e_{2}	equa
	(b) 2n	<pqr=130° and="" and<rst="110°" td="" then<=""><td>as lo</td></pqr=130°>	as lo
	141 4-2	CUBA internet and internet	

		quadrilateral is:
TOWING		of a quadrilateral is 180°, the
flowing		the sum of a pair of opposite ang
o A rive	'n	
(c) 143		(d) Sector is the region between the
(a) 102	1	of the circle
		as long as its radius is a diameter
neguire		(c) A chord of a circle, which is twice
Cilcular		equal arcs, each is a major arc
S. A Junch	v	(b) If a circle is divided into three
(c) (c)	2	ġ.
(a) 1/3		(a) A circle has only finite number of
area of		true?
bowl is		of the fol
steel is		36°, 72°, 108°,
	57.	48°, 60
(c) 2123		60° 96° 1
(a) 2057		16º 60º
(in cm ²)		madrilateral are:
total cu		the ratio of A
outer d		0 If the angles of quadrilateral are in
diamete		(d) SSA congruence rule
1	56	SAS
(c) 6		(h) ASA congriguence rule
(a) 5		(a) A A C congrience rule
of the w		are equal then it is called:
Rs. 10 p		of corresponding sides of
painting		If any two nairs of
perimete	•	
•	55	(a) 40° (b) 50°
(c) 4500		Q
(a) 5898		L.
umbrella		1 Tr.
how mu		
measurii		Pr.
triangula		~
. An umb	54	Ţ
(c) 9000		
(a) 8000		<pre>cp pT=95° and <tso=75° <sqt<="" pre="" then=""></tso=75°></pre>
the area		at point T such that <prt=50°.< td=""></prt=50°.<>
12:17:25		figure, if lines
Sides of	53.	$(a) + c$ (d) 70°
(c) Recta		(a) 40° (b) 50°

40. The atomic radius along a period:

(b) Increases in moving from left to right (a) Decrease in moving from left to right

(c) Decreases in moving from right to left

(c) 2n²

(b) 2n (d) 4n²

<QRA is:

(a) Cyclic (c) Rectangular (d) Square 1.87 d to make 5 such caps (in all is (in m): per m⁴ is Rs. 15000, the height er of 250m. If the cost of or of a rectangular hall has a ich cloth is required for the rella is made by stitching 10 of triangle (in cm⁴) is: a triangle are in the ratio of ; at the rate of 2 km per hour. 3m deep and 40 m wide is the bowl (in cm²) is: .98 a (in cm⁴)? 1g 20 cm, 50 cm and 50 cm. 's cup is in the form of right 25 rved surface area of the pipe r of a cross section is 4cm, the 43 12 cm, the area of the sheet ameter being 4.5 cm. The cone base radius 5 cm and 5cm, the outer curved surface 0.5 cm thick. The inner of the spherical bowl made up of S pipe is 77 cm long. The inner the four walls at the rate of and its perimeter is 540 cm. pieces, (b) 3 (d) 7 (b) 4898.98 (b) 8500 (d) 2218 (b) Parallelogram (d) 9500 (b) 1216.35 (d) 190.14 (b) 69.14 (d) 4000 (d) 1806.92 (b) 2012 each piece

32

Alig Sure Success

100

61. If the diameter of a sphere is 64. The probability of an event lies In a room of dimensions 5m×4m× The following observations have been The mode of the following data is 14, (a) 25 surface area is decreased by (in %): How much water will fall into the sea (a) 14 (a) 7500 3m, how many boxes of size 25cm× in a minute (in m³)? Eleven bags of wheat flour each (c) 61 (a) 63 'X' is: arranged in ascending order 29,32, 48, 50, X, X+2, 72, 78, 84, 95, If the 25, 14, 28, 18, 17, 18, 14, 23, 22, 14, 18: (c) 56.25 decreased by 25%, then the curved 20cm ×15 cm can be kept? (c) 4000 (a) 240 97, 5.05, 5.08, 5.03, 5.00, 5.06, 5.08, 4.98, 5.04, 5.07, 5.00. find the median of the data is 63, the value of Two coins are tossed simultaneously marked 5 kg, actually contained the between. (c)17.5 (c) 8500 probability that any of these bags (c) 0 to 100 (a) 0 to 1 times, one head = 50 times and no kg of flour. chosen at random contains less than 5 following weights of flour (in kg) 4 (a) 7/11 (c) 9/11 100 times and we get, two heads = 25 nead=15 times, (b) 12 (b) 240000 (d) 62 (b) 50 (d) 9000 (b) 8000 (d) 14400 (d) 18.75 (d) 43.75 (d) 1 (d) 0 to infinite (b) 0 to 10 (b) 64 (b) 2/11 the sum of 67. If α , β , γ are the zeroes of the cubic 68. The sum of the digits of two digit 72. ABC and BDE are two equivalent 70. If 69. 73. 71. The 20th term from the last term of (a) 0.35 (c) 0.15 probabilities of occurrence of these $(c) \frac{d}{d}$ (a) --- $\alpha\beta + \beta\gamma + \gamma\alpha$ is: polynomial $ax^3 + bx^2 + ax + d = 0$, then events will be: (a) 2 A boy can swim 20 (c) 36 (a) 81 reversing the order of the digits. The is twice the number obtained by number is 9. Nine times this number (c) 4 current in km/hr is: upstream in 2 hours. The speed of downstream in 2 hours and 4 km in number is: The ratio in which the y-axis divides (a) 2:1 (c) 168 the AP 3, 8, 13, 253 is: of BC. The ratio of the areas of triangles such that D is the mid point (c) -6 (a) ·±√24 $2x^2 + kx + 3 = 0$ are equal, then k is: (a) 4:1 (5,-6) and (-1,-4) is: the line segment joining the points (c) 4:1 triangles ABC and BDE is: (a) 158 (c) 6:1 0 the roots of (b) 3 (d) 5 (b) = 2 (d) 1.0 (b) 0.5 (d) 18 (b) +6 (b) 72 (b) 1:2 (d) 163 (b) 98 (d) ±√12 (d) None of the above (d) 1:4 (b) 5:1 (d) 2:3 equation km B' 75. Tha value of $\frac{\sin^2 63^\circ + \sin^2 27^\circ}{27^\circ}$ 74. The value of tan48° tan23° tan42° 76. The angle of elevation of the top of a 77. If tangents PA and PB from a point P 78. The wheels of a car are of diameter 79. A hemispherical tank full of water is 80. (c) +1/2 tan67° is: (a) 1/2 (a) -1 (c) 1 (c) 15 (a) 10√3 which is 30 m away from the foot of tower from a point on the ground tower in m is: the tower is 30°. The height of the (a) 50° to a circle with centre O are inclined (b) 70° to each other at an angle of 80°, then <POA is equal to: at a speed of 66 km/hour, in 10 revolutions each wheel makes is: minutes the number of complete emptied by a pipe at the rate of $3\frac{4}{2}$ (a) 4200 80cm each. When the car is traveling (a) 12 empty half the tank in minutes is: the tank is 3 m the time taken to liters per second. If the diameter of (c) 4300 A card is drawn from a well shuffled (c) 15 deck of 52 cards. The probability that the card will not be an ace is: (a) 1/12 (c) 12/13 (d) -1/2 (b) 01 (b) (d) 1 (b) -1/2 (6) (0 (d) 80° (b) 10 (b) 60° (d) 4275 (b) 4375 (b) 20 (d) 16.5 (d) 9/13 (b) 4/13 S 81. How many Sajda Aayat are there in 82. How many times one prayer at 83. 84. Who is founder of Madarsa Darul 85. 86. In which country Baitul Maqdas is 87. In how many years was complete 88. 90. 89 (a) 114 (c) 14 Which holy book was revealed upon ordinary place is equal to the one Road built by Sher Shah Soori is offered at Masjide Haram: Quraan? (a) 50000 (a) Injeel (c) 25,000 called: (c) Syria (c) Maulana Ilyas (b) Maulana Qasim Nanautavi (a) Maulana Mehmoodul Hasan Uloom Deoband? (c) Taurait Hazrat Isa? Where was first 'Wahi' revealed the (a) 10 (c) Grand Trunk Road Which King built Jama Masjid of (c) 23 (b) Beck Road (a) Jopling Road (d) Maulana Ashraf Ali (a) U.P. Quraan revealed? (a) Egypt located: (d) None of the above Delhi? In which state Konark Temple is (c) Ghaare Hira (d) Ghare Saur (a) Majide Haram (b) Masjide Nabavi Prophet Mohammad (PBUH)? located? (c) M.P. (a) Shah Jahan (b) Akbar (d) 7 (b) 30 (b) 1,00,000 (d) Saheefa (d) 1,000 (b) Zaboor (d) 40 (d) Palestine (b) 13 (b) Iraq (d) Odissa (b) Bihar 111

Scanned with CamScanner

60.

62

63.

65.

Alig Sure Success

110

Alig Sure Success

66.

(c) Haider Ali (d) Babar

- 91. Which of these Awards is not given in sports?
 - (a) Arjuna
 - (b) Rajiv Gandhi KhelRatan
 - (c) Phalke
 - (d) Dhayanchand
- 92. JawaharLal Nehru Award is conferred in which field :
 - (a) Music
 - (b) Film
 - (c) Sports
 - (d) International under standing
- 93. Who was the president of our country immediately after Dr. A.P.J. Abdul Kalam:
 - ·(a) Mr. K.R. Naraynan
 - (b) Mrs. Pratibha Patil
 - (c) Dr. S.D. Sharma
 - (d) Dr. R. Venkataka Raman
 - 94. The mandal commission recommended job's reservation for the OBC's:
 (a) 29% (b) 27%
 (c) 18% (d) 54%
 - 95. The tenure of Government of a state is years.

- (a) 4 (b) 3 (c) 6 (d) 5
- 96. Dogri is spoken in:
 - (a) Jammu & Kashmir
 - (b) Andman Nicobar
 - (c) Mizoram
 - (d) Panducherry
- 97. Akbar built an Ibadat khana at:
 - (a) Fatehpur Sikri (b) Agra
 - (c) Sikandra (d) Delhi
- 98. The Olympic symbol of five inter locking circles represent the five?
 - (a) Five Permanent members of Security council
 - (b) Five Continent
 - (c) Developed Nations G-5
 - (d) None of the above
- 99. The great Victoria Desert is located in:
 - (a) Canada (b) West Africa
 - (c) Australia (d) North America
- 100. Who is the first Indian woman to win an Asian Games gold in 400 m run?
 - (a) M.L. Valsamma
 - (b) P.T. Usha
 - (c) Kamaljit Sandhu
 - (d) K. Malleshwari

			AIN	2 AA FUO	- 2013-	2010			
1. (a)	2. (c)	3. (b)	4. (c)	5. (c)	6. (b)	7. (a)	8. (b)	9. (c)	10.(b)
11.(d)	12.(b)	13.(a)	14.(a)	15.(d)	16.(d)	17.(c)	18.(b)	19.(c)	20.(b)
21.(c)	22.(a)	23.(b)	24.(b)	25.(a)	26.(d)	27.(a)	28.(b)	29.(b)	30.(a)
31.(b)	32.(d)	33.(c)	34.(a)	35.(b)	36.(d)	37.(b)	38.(c)	39.(c)	40.(a)
41.(c)	42.(d)	43.(b)	44.(a)	45.(b)	46.(d)	47.(c)	48.(d)	49.(a)	50.(c)
51.(c)	52.(a)	53.(c)	54.(b)	55.(c)	56.(a)	57.(d)	58.(a)	59.(c)	60.(b)
61.(d)	62.(a)	63.(d)	64.(a)	65.(b)	66.(d)	67.(b)	68.(d)	69.(c)	70.(a)
71.(a)	72.(c)	73.(b)	74.(d)	75.(c)	76.(a)	77.(a)	78.(b)	79.(d)	80.(c)
81.(c)	82.(b)	83.(a)	84.(b)	85.(c)	86.(d)	87.(c)	88.(c)	89.(d)	90.(a)
91.(c)	92.(d)	93.(a)	94.(b)	95.(d)	96.(a)	97.(a)	98.(b)	99.(c)	100.(c)

ANSWERS - 2015-2016

The author & publisher are not responsible for any incorrect answers that might have occurred due to computer composing.

+2 AMU Sci./Dip. Engg. 2017-2018

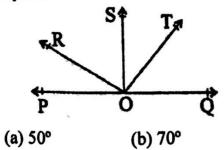
- The value of m in -3(m-2) > 12 is: 1.
 - (b) m < 2(a) m> -2
 - (d) m < -2 (c) m< -6

If $(x^{100} + 2x^{99} + k)$ is divisible by 2.

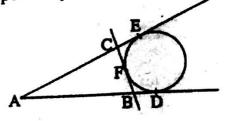
(x+1), then the value of k is:

(a)	1	(b) 2	
(")	•	(1) 1	

- (d) -3 (c) -2
- Two complementary angles are such 3. that twice the measure of the one is equal to three times the measure of the other. The larger of the two measures:
 - (b) 54° (a) 70° (d) 36° (c) 63°
- 4. Points A and B are 60km apart. A bus starts from A and another from B at the same time. If they go in the same direction they meet in 6 hours and if they go in opposite directions, they meet in 2 hours. The speed of the bus with greater speed is:
 - (b) 20 km/hr (a) 10 km/hr


(d) 40 km/hr (c) 30 km/hr

5. Find the ratio in which the line segment joining A(1, -5) and B(-4, 5) is divided by the x-axis:


> (b) 2:1(a) 1 : 1

(d) 1:2(c) 3 : 2

In the given figure, ray OS stands on 6. a line POQ. Ray OR and ray OT are angle bisectors of∠POS **∠SOO** respectively. If $\angle POS = y$, $\angle ROT$ equals:

- (d) 120°
- (c) 90° In the adjoining figure AD, AE and BC are tangents to the circle at D, E, 7. F respectively. Then

- (a) 4AD = AB + BC + AC(b) 3AD = AB + BC + AC(c) 2AD = AB + BC + AC(d) AD = AB + BC + AC
- The pillars of a building are 8. cylindrically shaped. If each pillar has circular base of radius 20 cm and height 10 m, concrete required to build 14 such pillars is: n³

- (d) 12.56 m^3 (c) 17.6 m^3
- 9. A die is thrown 1000 times with frequencies for the outcomes 1, 2, 3, 4. 5. 6 as given in the table.

Outcome	1	2	3	4	5	6
Frequency	179	150	157	149	1275	190

(a) 0.81	(b) 0.19
(c) 0.15	(d) 1.0

10. The mean of 25 observations is 36. The mean of the first 13 observations is 32 and that of last 13 observations is 39. What is the value of the 13th observation?

(c) 32	(d) 40

11. Rational form of 0.001 is:

(a) $\frac{1}{99}$	(b) $\frac{1}{199}$
(c) $\frac{1}{999}$	(d) $\frac{1}{111}$

stream is: (a) 6 km/h (b) 54 (c) 60 km/h (d) 8 (c) 60 km/h (d) 8 16. A person on tour has 1 texpenses. If he extended days, he has to cut e days, he has to cut e duration of the tour is: (a) 20 (b) 2 (d) 1	is ahead of Y by $1\frac{1}{2}$ hours. Then use speeds of X and Y are: (a) $\frac{10}{3}$ km/hr, 10 km/hr (b) 10 km/hr, $\frac{10}{3}$ km/hr (c) $\frac{10}{3}$ km/hr, $\frac{10}{3}$ km/hr (d) 10 km/hr, 5 km/hr 15. A motor boat whose speed is 18 km 15. A motor boat whose speed is 18 km 24 km upstream to return downstre 24 km upstream to return downstre to the same spot. The speed of	f $\frac{x}{y} + \frac{y}{x} = 1$ where $x \neq 0, y \neq 0$, then f $\frac{x}{y} + \frac{y}{x} = 1$ where $x \neq 0, y \neq 0$, then (b) -1 (a) 1 (c) 0 (d) $\frac{1}{2}$ (c) 0 (d) $\frac{1}{2}$ (c) 0 (c) Rs. 200 per month, find their saves Rs. 200 per month, find their saves Rs. 200 per month, find their saves Rs. 1200, Rs. 1400 (a) Rs. 1800, Rs. 1400 (b) Rs. 1800, Rs. 1400 (c) Rs. 1000, Rs. 7000 (d) Rs. 9000, Rs. 7000
stream is: (b) 54 km/h (c) 60 km/h (d) 8 km/h (d) 8 km/h (d) 8 km/h (d) 8 km/h (d) 8 km/h (d) 8 km/h (f) 60 km/h (f) 60 km/h (f) 60 km/h (f) 60 km/h (f) 60 km/h (f) 8 km/h	head of Y by $1\frac{1}{2}$ hours. Then the seds of X and Y are: $\frac{10}{3}$ km/hr, 10 km/hr b) 10 km/hr, 10 km/hr c) $\frac{10}{3}$ km/hr, $\frac{10}{3}$ km/hr (c) $\frac{10}{3}$ km/hr, 5 km/hr (d) 10 km/hr, 5 km/hr A motor boat whose speed is 18 km/h A still water takes 1 hour more to go is still water takes 1 hour more to go to the same spot. The speed of the	re $x \neq 0, y \neq 0$, th (b) -1 (d) $\frac{1}{2}$ (d) $\frac{1}{2}$ the ratio of th the ratio of the rat
2 × + + 22	20. 10 go 21.	e k 19. 18. 17.
(c) $\frac{1}{3}$ (d) $\frac{1}{9}$ If A, B and C are interior angles of a triangle ABC, then $\sin\left(\frac{B+C}{2}\right) =$ (a) $\sin\frac{A}{2}$ (b) $\cos\frac{A}{2}$ (c) $-\sin\frac{A}{2}$ (d) $-\cos\frac{A}{2}$	(a) $\frac{1}{2}$ (d) 4 (c) 1 (d) 4 (d) 4 (e) 1 (d) 4 (f) 4 (f) 4 (f) 4 (f) 4 (f) 4 (f) 4 (f) 6 (f) 6 (f) 3 (g) 2.5 cm (g) 2.5 cm (g) 2.5 cm (g) 2.5 cm (g) 4.5	ngular park breath is Its area i more than s already of an isosce than isosce
(d) $\frac{1}{9}$ are interior an then $\sin\left(\frac{B+1}{2}\right)$ (b) $\cos\frac{A}{2}$ (d) $-\cos\frac{A}{2}$	(d) 4 (d) 4 GD is a lin (b) 3 cm (d) 4 cm (d) 4 cm (d) 4 cm $\frac{3}{x} = \frac{3}{x}$	c is to be de 3 m less tf is to be 4 the area of been made been made been made h of the reci- de 12 m. Th de 12 m. Th de 12 m. Th factor of the AP taken so tf taken so tf (d) None of (d) None of (b) 3

24. From a point on a bridge across a 23. secA(1-sinA)(secA+tanA) eqauls: 25. 27. A copper rod of diameter 1 cm and 26. A cone of height 24 cm and radius of 28. If the median of the following series 29. In a musical chair game, the person m base 6 cm is made up of modelling $(a)\frac{1}{30}cm$ (c) $\frac{15}{15}$ cm (a) 3√3 length 18 m of uniform thickness. The cost of fencing a circular field at (c) $3(\sqrt{3}-1)m$ clay. A child reshapes it in form of (a) 0 (a) 41 of Rs. 1 per m⁴. The cost of river, the angles of depression of the © 1 stop playing the music at any time within 2 minutes after she starts of observation is 40 The thickness of the wire is: length 8 cm is drawn into a wire of sphere. The radius of shapere is: ploughing the field is: the rate of Rs. 24/meter is Rs. 5280. are 30° and 45° respectively. If the banks on opposite sides of the river playing the music has been advised to (c) 42 (c) 4 cm (a) 8 cm The field is to be ploughed at the rate bridge is at a height of 3m from the (c) Rs. 2925 (a) Rs. 1925 banks, the width of the river is: playing. What is the probability that 30, 31, 35, x, x+2, 45, 48, 49 (d) 1/60 cm (d) Rs. 5280 (b) Rs. 3850 (b) $\frac{1}{90}$ cm (d) $3(\sqrt{3}+1)m$ (d) -1 (d) 43 (d) 2 cm (b) 6 cm (b) 3 m (b) 39

31. Which is highest honour of award 32. 30. A bag contains 4 red balls and some 34. 33 35. Which state has become the first 36. E. Ahmad, who passed away recently, grains? system (a) (a) 10 The radius The Kawal Tiger Reserve (KTR) is Which cup and trophy is associated given for achievement in sports red ball, find the number of the blue drawing a blue ball is double that of blue balls. If the probability of the music will stop within the first (a) 4000 (c) 6 half-minute after starting? was Member of parliament (MP) Indian state approximately located in the Indian State of: (a) Ranji Trophy (b) Agha Khan Cup with cricket? (c) Dhayan Chand Award (b) Dronacharya Award (a) Arjuna Award balls in the bag: from which LokSabha constituency? (c) Manipur (a) Telangana (d) Rajiv Gandhi KhelRatna Award (c) Kozhikode (a) Ernakulam (c) Punjab (a) Karnataka (c) 6000 (c) Davis Cup for distribution of food to establish cashless (b) $\frac{1}{2}$ (d) Walker Cup of the (d) 1 (d) 12 (b) 5000 (d) Thrissur 8(9) (d) Gujrat (d) 7000 (b) Nagaland (b) Mallapuram (b) Kerala (d) Sikkim earth kms. S

		1	
T who won the Monaco Grand Prix in	(c) 1078 AD (d) 975 AD	exert to make the more becaused	gets on it. The mass of the man will
	46. What is the old name of Maunan-iul-	again is:	be : (density of water = 100 kg/m^3)
(a) Fernando Alonso	(a) Taif (b) Yasrib	(a) 980 N (b) 9800 N	(e) 12 kg (d) 128 kg
(b) NicoHulkenberg	2	2	nce tra
(c) KimiKakkonen	Prophet,	(c) you N (d) ∞	air, when tuning fork of frequency
(d) Lewis riaminon (d) Lewis riaminon (d) Lewis riaminon (d) Lewis riaminon (d) Lewis riaminon (d) Lewis riaminon	in the:	= >	560Hz makes 30 vibrations, will be :
Twist" was written by	(a) Battle of Badar	400 bullets per minute with a speed	(speed of sound in air = 336 m/s)
(a) John Milton	(c) Battle of Yamamah		
(b) William Snakespeare	(d) Battle of Uhad	o the gun to keep it in	60. The pitch of sound is :
(d) Charles Dickens	48. Before the Prophethood Muahmmad	(a) 93.3 N (b) 93.3 N	(a)Directly proportional to frequency
39. Where was 2016 Summer Olympics	(a) A traveler (b) A trader	(c) 9.33 N	(b)Inversely proportional to frequency
held?		Do. I wo masses of 1 g and 9 g are	of vibration
(c) Montreal (d) Paris	49. The first Prophet of Allah was:	The ratio of the magnitudes of their	vibration
40. Who was the first President of United	(h) The Prophet Ibrahim	respective linear momenta is:	(d) Inversely proportional to amplitude of
(a) Donald Trump	(c) The ProphetIshaq	1	61.If in the circuit, power dissipation is
(c) George Washington	50. The Life Hereafter is known in Islam	sed to a	150 W, then R is
	as: (a) Oavamat (b) Mahshar	object is allowed to fall, find its	, , , , , , , , , , , , , , , , , , ,
41. Madrasatul Uloom was established by Sved Ahmed Khan in:	•••	survey shows a set of m/s^2).	
(a) 1895 AD (b) 1865 AD	51. The position of an object moving	(a) 2000 J (b) 1000 J	
(c) 1875 AD (d) 1870 AD 47 Which of the following was not a		(c) 200 J (d) 100 J 57. If the two liquids of same mass but	lsv
		densities d ₁ and d ₂ respectively are	(a) 2Ω (b) 6Ω
(a) Babur (b) Bahadur Shah	average velocity between 1-2s and t=4s?		(c) $S\Omega$ (d) 4Ω
43. Whose tomb is situated in Delhi?	m/s	(a) $d = \frac{1}{2}$	
	(c) 20 m/s (d) 12 m/s	(b) $d = \frac{d_1 + d_2}{d_1 + d_2}$	parallel. The ratio of heat produced in
(c) Sheikh Ahmed Sirhindi	travelling in x-direction is given by	$2d_1d_2$	(a) 2 : 1 (b)1 : 2
(d) Baba Farid Ganjshakar, 44 Who pave the slogan' 'Inquilab	$y = 10^{-3} \sin \left(800t - 2x + \frac{\pi}{2} \right)$	(c) $d = \frac{2a_1a_2}{d_1 + d_2}$	(c) 4 : 1 (d) 1 : 4 63. When the same current is a
Zindabad'?		$(d) d = \frac{d_1 d_2}{d_1 d_2}$	the same time through different
(a) Malana Usert Mohani	in seconds. The speed of wave motions (in ms ⁻¹) is:	58. Aboat having a length of 3 m and	substance deposited at the electrodes
1	(a) 400 (b) 800 (c) 1200 (d) 200	The boat sinks by 1 cm when a man	(a) Chemical equivalent weights (b) Atomic weights
Muahmmad Ghauri was:	53. In a tug of war, a 100 kg mass is hanged from the mid-moint of the		(c) Specific gravities
(a) 14/0 AL (0)			

		69.	68	67.	8	5	a		4
	(c) Fusion (d) Sublimation		 (a) Winds (b) Tides (c) Rain (d) All of these (d) All of these (e) Rain (f) All of these (f) All of these (g) All of these (h) All of th	source? (a) Wood (b) gobár-gas (c) nuclear energy(d) coal Uneven heating of air over an		Power of a lean is—2.0 D. The tocal length and type of lens are respectively: (a) - 50 cm, convex lens (b) - 50 cm, concave lens	(c) $1/\sqrt{2}$, (d) $\sqrt{2}$	45° Aso Medium B	(d) Atomic numbers Figure shows a ray of light as it travels from medium A to medium B. Refractive index of medium B. relative to medium A is :
		1	76.	75.	74.	73.	72.	1.5.5 . 4 .	70.
(a) Ovalic acid	 and secretes: (a) Acetic acid (b) Citric acid (c) Methanoic acid (d) Ovalic acid 	hydrochloric acid ? \cdot (a) N ₂ (g) (b) CO ₂ (g) (c) O ₂ (g) (d) CO (g)	 (b) An endothermic process (c) Neither exothermic non endothermic (d) Can be exothermic or endothermic (d) Can be exothermic or endothermic (e) Which gas is liberated when sodium (f) bicarbonate is reacted with aqueous 	 (a) Aluminium (b) Gold (c) Silver, (d) Titanium (b) An avoid the main process of the main process o	T	1st (a) 16 g (b) 32 g (c) 6.023×10^{23} (d) 2.66×10^{-23} g The number of neutrons present in 26 g of ¹³ C are:	 (a) Gel type colloids (b) From type colloids (c) Aerosol type colloids (d) Emulsion type colloids (e) Abrosol of type colloids 	 (c) The particles of a suspension scatter a beam of light passing through it and make its path visible (d) They cannot be separated from the mixture by the process of filtration 	Which one of the following properties is not correct for a suspension? (a) Suspension is a heterogeneous mixture (b) The particles of suspension can be seen by the naked eve

system is: (a) Mollusca (c) Arthropoda (c) Arthropoda (c) Arthropoda (c) Arthropoda (c) Accelomate (c) Aungs (c) Lungs (c) Lungs (c) ArtP molecule it water, energy released: (a) 7 kJ/mol (c) 22 kJ/mol (c) Aves (c) Av	 Ine targest group of animal kingdom characterized by bilateral symmetry 	(a) NO (b) CO (c) SO ₂ (d) Soot	(a) 17 (b) 2 (c) 19 (d) 33 6. The major pollutant from aut exhaust is :	(b) Rb (d) Cs atomic number of represents a metal is:	etic acid ar ethanol an of the fc melting po	 83. (Heating of ethanol with excess cone.) (H₂SO₄ at 443 K produces: (a) Ethene and water (b) Acetic acid and water 	 82. Benzene with molecular formula C₆H₆ has (a) 6 single bonds and 6 double bonds (b)12 single bonds and 3 double bonds (c) 6 ingle bonds and 3 double bonds 	(a) Phosp (c) Carbon The con compound (a) Butyne (c) Heptyn	 (a) 0.3 N (b) 0.15 N (c) 0.6 N (d) 0.9 N 79. A solution turns red litmus blue, its pH is likely to be: pH is likely to be: (a) 1 (b) 4 (c) 5 (d) 10 80. Buckminster fullerene is an allotropic from of :
 a) Mollusca (b) Echinodermata (c) Annelida (d) Presence of notochord (e) Presence of notochord (f) Accoelomate (f) Left atrium (f) Left ventricle for the following in ATP molecule is broken down using water, energy of irreleased: (a) Atrinol (f) Left ventricle (f) Left atrium (f) Left ventricle (f) ATP molecule is broken down using water, energy of irreleased: (a) Atrinol (f) Left atrium (f) Left ventricle (f) Charles (f) Nucleus (f) Mammalia (f) Nucleus (f) Mammalia (f) Nucleus (f)	95.			elements (b) (c)	tal have 393.		16 C	¥ 90.	% %
	cpuncial tissue lich of the following is	Metristermatic tissue Protective tissue	verteorata hich is the dividing tis he growing regions of t Adipose tissue	Nematoda Annelida Echinodermata) Cytoplasm (b) Mitochondria) Chloroplast (d) Nucleus hich one of the following group imals are triploblastic and radii	 Aves (d) Mammalia be breakdown of pyruvate to give rbon dioxide, water and energy take ace in: 	leased:) 7 kJ/mol) 22 kJ/mol) 22 kJ/mol (d) 30.5 kJ/mol istence of four chambered wo eart starts from: (d) hour hail have hour hour hour hour hour hour hour hour	eings occurs in:) Right atrium (b) Left atrium) Lungs (d) Left ventricle /hen terminal phosphate linkage TP molecule is broken down us ater, energy of	 (b) Echinoderma (c) Arthropoda (d) Annelida (d) Annelida (d) Annelida (d) Annelida (d) Annelida (d) Annelida (e) Arnelida (e) Presence of dorsal hollow nerve of protochord (f) Presence of notochord (f) Acoelomate (f) Triploblastic (f) Triploblastic

00

00

00

(10(a) Xylem the bas yood tranges (b) Phloem (c) Neither (a) nor (b) (d) Both (a) and (b) 96. Which of the following do not produce seeds? ta (a) Gymnosperms b is socreas 1 (a) (b) Angiosperms (to observe (d) . (c) Pteridophyta as moleco A (a) (d) None of the above 97. Which of the following is not an example of Porifera? (a) Euplectella (b) Sycon (b) at (c) Spongilla and tacitmat and VI .09 ge (d) Sea Anemones and a final of the

(b) 18.5 kJ/mbJ

21

water chargy of

76. What is (be correctility of 6.3 M H₃PO₆.

98. The gap between two neurons is called:

1 6 8 (8)

- (a) Synapse
- (b) Axon
- (c) Neither (a) and (b)
- (d) Both (a) and (b)
- 99. The anther contains:
 - (a) Sepals (b) Pollen grains
 - (c) Ovules (d) Carpel
- 100. An example of homologous organs is:
 - (a) Our arm and a dog's foreleg

er henrick and Regime

(b) Our teeth and an elephant's tusks

82 if envine with molecular formula.

(c) k . (d) Cs

(a) +7 (b) 2

which represents a metal is:

(a) (b) (d) 33 · · ·

86. The major collutant from automobile

N 07:(d)

tone (M

The largest group of animal Riegdom

chilicantenzed by bilateral symmetry

85. The atomic number of cleinens

- (c) Neither (a) nor (b)
- (d) Both (a) and (b)

	ANS	WERS	- 201	7-2018
--	-----	------	-------	--------

	in the second seco								
1. (d)	2. (a)	3. (b)	4. (b)	5. (a)	6. (c)	7. (c)	8. (c)	9. (b)	10. (b)
11. (c)	12. (c)	13. (b)	14. (c)	15. (a)	16. (a)	17. (a)		19. (c)	20. (c)
21. (c)	22. (b)	23. (c)	24. (d)	25. (b)	26. (b)	27. (c)	28. (b)	29. (a)	·30. (b)
31. (d)	32. (a)	33. (a)	34. (c)	35. (d)	·36. (b)	37. (d)	38. (d)	39. (a)	the second se
41. (c)	42. (c)	43. (b)	44. (c)	45. (b)	46. (b)	47. (d)	48. (b)	49. (d)	50. (d)
51. (a)	52. (a)	53. (d)	54. (a)	55. (c)	56. (b)	·57. (c)	58. (a)	59. (c)	
61. (b)	62. (c)	63. (a)	64. (a)	65. (b)	66. (c)	67. (a)	68. (b)		
71. (d)	72. (d)	73. (c)	74. (b)	75. (a)	76. (b)	77. (c)	78. (c)	79. (d)	
81. (c)	82. (b)	83. (a)	84. (d)	85. (c).	86. (b)	87. (c)	88. (c)		
91:(b)	92. (b)	93. (c)	94. (b)	95. (d)	96. (c)	97. (d)	98. (a)		

8.0

(a) Nematoda
 (b) Armalida

·headlon

- (c) Echinodermata
 - (d) Venconsta
- Which is the dividing tissue present in the growing regions of the plant?
 - (a) Adipuse timue
 - (b. Mounstemater fissue »
 - (c) Protoctive tissue
 - (d) Epitheliai (a) tissue
- 95. Which of the following is a complex

(a) NO

(01502 -