STRUCTURAL ENGINEERING

I - Semester

Course No.	Course Title	Course Type	Credits	Cont	tact H	ours
				L	Р	G
CE 601	Higher Numerical Analysis	DC	4	3	0	1

Unit 1

Types of errors, General formula for errors, order of approximation. Nonlinear equations: Classification of Methods, Approximate values of roots, Bisection Method, RegulaFalsi Method, Newton Raphson Method, Fixed Point iteration, Mullers Method. Use built in functions in MATLAB software to solve problems.

Unit 2

Linear Systems of Equations: Direct Method - Matrix Inversion Method, Gauss Elimination Method, Gauss Jordan Elimination Method, Cholesky Method.

Iterative Methods- Jacobi Iteration Method, Gauss Seidel Method. Eigen value problem. Use built in functions in MATLAB software to solve problems. Interpolation and Approximation: Lagrange and Newton Interpolation, Finite difference operators. Use built in functions in MATLAB software to solve problems.

Unit 3

Numerical solution of Ordinary: Introduction, solution by Taylor's series, Picards method of successive approximations, Euler's method: Error estimates for the Euler method, modified Euler's method, Runge-Kutta methods, simultaneous and higher order equations using Taylor's series, Picards method of successive approximations, Euler's method, Boundary Value Problems: Finite Difference method.

Unit 4

Numerical solution of Partial Differential Equations: Introduction, Finite Difference Approximation to derivatives, Laplace's, Parabolic Equations and Hyperbolic Equation: Jacobi's method, Gauss Seidel method, Iterative methods for the solution of equations, Variational and weighted residual methods, Introduction of FEM.

Text Books and Reference Materials

- 1. Numerical Analysis: Goel & Mittal
- 2. Applied Numerical Analysis: Gerald & Wheatley
- 3. Numerical Methods for Engineers: Chapra & Canale
- 4. Introductory Methods of Numerical Analysis: Sastry, Numerical Methods: Jain and Jain

Course No.	Course Title	Course	Credits	Contact Hours			
		Туре		L	Р	G	
CE 602	Theory of Elasticity and Plasticity	DC	4	3	0	1	

UNIT 1

Theory of stresses, infinitesimal and finite strain, strain-displacement relationships, elastic constants

UNIT 2

Stress and displacements functions, plane problems in Cartesian and polar co-ordinates **UNIT 3**

Elements of plasticity, failure and yield criteria, flow rule.

UNIT 4

Velocity field, plastic stress-strain relationships, incremental plasticity.

Text Books and Reference Materials

1. Theory of Elasticity by S.P. Timoshenko & J.N. Goodier, Tata McGraw Hill.

- 2. Plasticity: Theory and Applications by Alexander Mendelson, New York, MacMillan, 1970
- 3. Solid Mechanics by S.M.A. Kazimi, Tata McGraw Hill.
- 4. Advanced Mechanics of Solids by L.S. Srinath, Tata McGraw Hill.
- 5. Computational Elasticity by M. Ameen, Narosa Publishing House.
- 6. Introduction to Engineering Plasticity by G.K. Lal & N.V. Reddy, Narosa Publishing House.
- 7. Plasticity for Structural Engineers by Chen & Han, Cengage Learning.

Course No.	Course Title	Course Type	Credits	Con	tact H	ours			
				L	P	G			
CE 603	Plates and Shells	DC	4	3	0	1			
Unit 1 Backgroun	d and basic concepts								
Basic concepts, governing equations and boundary conditions of plates.									
Unit 2 Solution o	f Plates								
Solution of rectan	gular and circular plates	by classical metho	ods: Navier's and	Levy's	metho	ods.			
Unit 3 Membrane	e theory of cylindrical sh	ells							
Introduction, type	s of shell surface, classifi	ication, basic conc	epts, equations of	f equilit	orium,				
application of Fou	rier series for membrane	stresses, numeric	al solutions, limit	ations o	of				
membrane theory									
Unit 4 Bending th	eory of cylindrical shells	5							
Flugge's different	tial equation, Donnell's th	neory, D-K-J chara	acteristic equation	n, Schor	er's th	ieory,			
shell analysis usir	ng tables, design consider	ation.							
Text Books and R	eference Materials								
1. Timoshenko	S.P. &Woinowsky-Krieg	ger S., Theory o	of Plates and Sh	ells. M	[cGrav	v-Hill,			
(1964).									
2. Szilard R., Theories and applications of plate analysis: classical, numerical, and engineering methods, John Wiley, (2003).									
3. Ramaswamyn	n, G. S., Design and Con	struction of Conc	rete Shell Roofs,	C.B.S.	Publis	sher's,			

(1986).
4. Ventsel E. & Krauthammer, T., Thin Plates and Shells: Theory, Analysis, and Applications, (e book) (2001).

Course No.	Course Title	Course Type	Credits	Cont	tact H	ours
				L	Р	G
CE 604	Advanced Structural Analysis	DC	4	3	0	1

Introduction to Matrix methods in skeletal structural analysis: force and displacement methods. **Unit 2**

Application of force method to plane and space frames problems.

Unit 3

Application of displacement method to plane and space frames problems.

Unit 4

Analysis of Frames, Organization of computation, programming considerations. Non-linear analysis due to plasticity in frames.

Text Books and Reference Materials

- 1. Pundit and Gupta, "Structural Analysis- A Matrix Approach", 'Tata McGrawHill Publishing Company Limited. New Delhi
- 2. C.S. Reddy,"Basic Structural Analysis" 'Tata McGrawHill Education Publishing Company Limited. New Delhi
- 3. DevdasMenon, "Advanced Structural Analysis", Narosa Publishing House, 2009.
- 4. AsslamKassimali, "Matrix Analysis of Structures", Brooks/Cole Publishing Co., USA, 1999.
- 5. Amin Ghali, Adam M. Neville and Tom G. Brown, "Structural Analysis: A Unified Classical and Matrix Approach", Sixth Edition, 2007, Chapman & Hall.
- 6. DevdasMenon, "Structural Analysis", Narosa Publishing House, 2008.
- 7. R.C. Hibbeler, Structural Analysis, Prentice Hall, 1999.
- 8. Web links to e-learning:nptel
- 9. Web based learning, Journal papers, etc.

Course No.	Course Title	Course Type	Credit	Cont	tact H	ours
			S	L	Р	G
CE605	Advanced Concrete Design	DC	4	3	0	1

Limit state design: Basic concepts and philosophies, design of RC members in flexure, shear and torsion, members subjected to combined stresses, slender column, safety and serviceability, control of cracks and deflections, design of RC framed structures with ductile detailing.

Unit 2

Yield line analysis of slabs, yield line mechanism, equilibrium and virtual work methods, Hillerberg's strip method.

Unit 3

Prestressed Concrete, Design of pre-stressed members for bending, shear, torsion and bond, End blocks.

Unit 4

Prestressed continuous beams and frames, slab and grid floor, tension and compression members, circular pre-stressing, pipes, tanks and special structures.

Text Books and Reference Materials

- 1. Karve and Shah "Limit State Theory and Design of reinforced Concrete" VGP, Pune, India.
- 2. Pillai and Menon "Reinforced Concrete Design" TMH, New Delhi, India.
- 3. Verghese, P. C. "Advanced Reinforced Concrete Design" PHI, Delhi, India.
- 4. Winter, G. "Design of Concrete Structures" McGraw Hill, Tokyo, Japan.
- 5. Evans and Cook "Reinforced and Pre- stressed Concrete" TN, London, U.K.
- 6. Lin, T. H. and Burns, H. N., "Design of Pre-Stressed Concrete Structures", Wiley, Canada.
- 7. Jain, A. K. "Reinforced concrete-limit State Design" NCB, Roorkee, India.
- 8. Raju, N.K. "Pre-Stressed Concrete" TMH, Delhi, India.

Selected B. I.S Codes

- 1. I. S.:456-2000-Code of Practice for Plain and Reinforced Concrete, BIS, New Delhi, India.
- 2. I. S.:875 -1987(Part I & II)-Code of Practice for Design Loads(other than earthquake) for Building and Structures, BIS, New Delhi, India.
- 3. I.S.:1893-1984-Criteria for Earthquake Resistant Design of Structures, BIS, New Delhi, India.
- 4. I.S.:4326-1993-Code of Practice for Earthquake Resistant Design and Construction of Buildings, BIS, New Delhi, India.
- 5. I.S.:13920- Ductile detailing of reinforced Concrete Structures subjected to Seismic forces, BIS, New Delhi, India.
- 6. S.P.:16 -Design Aids for Reinforced Concrete to IS: 456-2000, BIS, New Delhi, India.
- 7. S.P.:24 -Explanatory Hand Book of I.S. Code for Plain and Reinforced Concrete, BIS, New Delhi, India.
- 8. S.P.:34 Hand Book of Concrete Reinforcement and Detailing, BIS, New Delhi, India.
- 9. I.S.:1343-1980-Code of Practice for Pre-Stressed Concrete, BIS, New Delhi, India.

Course No.	Course Title	Course Type	Credits	Cont	tact H	ours
				L	Р	G
CE641	Advanced Soil Mechanics and Foundation Engineering	DC	4	3	0	1

Soil Investigation: Soil exploration for hydraulic and buildings structures, SPT, Dynamic and Static cone penetration tests and Geophysical exploration techniques.

Unit 2

Shallow Foundations: Bearing capacity and Settlement of foundations. Design of shallow foundations, Spread, Strip and Combined footing (conventional and elastic line methods), Raft foundations, Design of Machine foundation.

Unit 3

Deep Foundations: Design of deep foundations, Pile and pile groups, Pile caps.

Unit 4

Earth Retaining Structures: Lateral earth pressure, Design of retaining walls and sheet pile walls, Principles of design of cofferdams and diaphragm walls

Text Books and Reference Materials

- 1. Ranjan, G. and Rao, ASR. "Basic and Applied Soil Mechanics." New Age International Publishers, New Delhi.
- 2. Braja M. Das. "Principles of Geotechnical Engineering.", Thomson Learning.
- 3. Raj, P.P. "Soil Mechanics and Foundation Engineering." Pearson Education.
- 4. Kaniraj, S.R. "Design Aids in Soil Mechanics and Foundation Engineering." TATA McGraw Hill, New Delhi.
- 5. BIS 2911 (Part 1 5), Bureau of Indian Standards for Pile Foundations.
- 6. BIS 2131, Bureau of Indian Standards for Soil Exploration.
- 7. BIS 1888, Bureau of Indian Standards for Plate Load Tests.

Course No.	Course Title	Course Type	Credits	Cor	ntact Hou	irs			
				L	Р	G			
CE 606	Finite Element Analysis	DC	4	3	0	1			
Unit 1 Introduction									
Finite element me	thod and other classic	al methods, historical	background,	advanta	ges &				
disadvantages, fin	ite element modeling	- discretisation, node	s, elements ty	pes and	shapes.				
Basic equations in elasticity – stress and strain vectors, Hooke's law, strain-displacement									
relationship, equi	librium equations, ge	neralized compatibilit	y equations.						
Unit 2 Finite element	analysis of one dime	ensional problem							
Generation of stiff	fness matrix by displa	cement and energy m	ethod, energy	and var	iational				
approaches (Rayle	eigh-Ritz method), nu	merical solutions.							
Unit 3 Iso-parametric	elements and shape	functions							
Co-ordinate system	Co-ordinate systems, Element shapes, Strain displacement matrix, Higher order elements: 1D, 2D								
and 3D.									
Unit 4 Finite elemen	t analysis of two dim	ensional problems	6.4. 1.4	т. 1	, . ,				
Symmetry, Plane	stress and plane strain	i problems, Bending o	of thin plates,	Introduc	ction to				
	ysis.								
			·	0		1. 1 .			
Company, 200	. Fundamentals of F 95.	inite Element Analys	sis. Tata Mc	Graw -	Hill Put	olishing			
2. Robert D. Coc	ok, Concepts and App	lications of Finite Ele	ement Analys	sis, Wile	y, John &	& Sons,			
1999. 3 Chandrupatie	Belgundu Finita Fi	lamants in Enginaarin	a Drantica U	all of In	dia Driva	to I td			
1997.	CDelagundu, Finnte El	lements in Engineerin	g, richuce n		uia fiivă	ie Liu.,			
4. C. S. Krishna	moorthy, Finite Elen	nent Analysis – Theo	ory and Prog	ramming	g, Tata M	IcGraw			
Hill, 1995.									
5. K. J. Bathe, Fi	nite Elements Procedu	ures in Engineering ar	nalysis, Prenti	ice Hall	Inc., 1995	5.			
6. J. N. Reddy,	An Introduction to	the Finite Element I	Method, Mc	Graw Hi	ill, Intern	ational			
Edition, 1993.				~					
7. O. C. Zienkiev	7. O. C. Zienkiewicz, and R. L. Taylor, The Finite Elements Methods, McGraw Hill, 1987.								
8. Timoshenko, S	S., Theory of Elasticit	y and Plasticity, McG	raw Hill Boo	k compa	ny.				

Course No.	Course Title	Course Type	Credits	Contact Hours		irs				
				L	Р	G				
CE 607	Structural Dynamics	DC	4	3	0	1				
Unit 1										
Types of Vibra	Types of Vibration and Ground motions, Undammed and Damped Single Degree of Freedom									
System,	System,									
Response of S	DOF System to Harmonic Loa	ding.								
Unit 2										
Response to (eneral Dynamic and Impulsiv	e Loading, Duhamel	s Integratio	on, Fouri	er Analys	is and				
Response in t	ne Frequency Domain.	-	-		-					
Unit 3										
Free Vibratio	n of Lumped Multi Degree of F	reedom System. Ap	oroximate N	Nethods	For Obta	aining				
Natural Frequ	encies and Mode Shapes. Fre	quency Domain Anal	ysis Of Lum	nped Mu	lti Degree	e Of				
Freedom Syst	em Using Normal Mode Theo	ry, Time Domain Ana	, alysis Using	Numerio	cal Integr	ation				
Scheme.	C C		, 0		U					
Unit 4										
Principle of V	rtual Work, Rayleigh's and Mo	odified Rayleigh's Me	ethod, Dyna	amic Ana	lysis of S	ystems				
with Distribut	ed Properties.	, 0	, ,		,					
Text Books and	Reference Materials									
1. Structural D	namics: Theory and Comput	ation byMario Paz,	Kluwer Ac	ademic]	Publisher	Group,				
Netherland.										
2. Dynamics of	Structures: Theory and Applica	ation to Earthquake E	ngineering b	ру А. К.	Chopra,	Pearson				
Education, In	2.			D .1	1	T .				
3. Elements of	Earthquake Engineering and	Structural Dynamics	by Andre	Filiatrau	ilt, Presse	es Inter				
A Structural Dy	namics: Vibrations and Systems	hy MadhuiitMukhona	lhava Ana F	Rook Driv	ata Limita	ad				
5 Fundamental	of Structural Dynamics by Poy	R Craig Andrew I K	urdila John	Wilev F	ale Lillie Publicatio	ns				
6 Web links to	e-learning. <i>nntel</i>	K. Craig, Andrew J. K	<u>uruna</u> , 50m	whey I	uoncatio	·113.				
7. Web based le	arning, Journal Papers, etc.									

Course No.	Course Title	Course Type	Credits	Contact Hours						
				L	Р	G				
CE608	Advanced Steel Design	DC	4	3	0	1				
Unit 1Steel Bi	ridges									
Loads, classification and design procedures, plate girder bridges and truss girder bridges.										
Unit 2 Steel Chimneys										
Analysis and d	Analysis and design of steel chimneys and elevated steel water tanks.									
Unit 3 Towers	8									
Analysis and d	lesign of transmission line and	d microwave towe	ers.							
Unit 4 Tubula	ir Sections	Irrain and design	of turbulor of		:441 a fue					
fotique	avior of tubular sections, and	lysis and design (of tubular se	cuons, dr	ittle irac	aure and				
in steel structu	res plastic design of steel stru	icture								
Toxt Books and Bo	foronco Matorials									
1 Design of Stor		Chandra and V. C	ablat Calanti	fie Dubli	ah awa Jua					
1. Design of Stee	el Structures VOI - II, Dr. Ram	Chandra and V. G	enior, scienti		sners, in	ula.				
2. Unined Desig	n of Steel Structures, LUIS F. C	Jreschwindher, Jo	nn wiey and			~~~~				
5. Ductile design	n of steel structures, <u>Miche</u>	<u>i Bruneau</u> , <u>Chia-Iviii</u>	ng Udng, Kala	el E. Sab	<u>em</u> , wice					
4 Design of Stor	al Structures A S Arus & L L	Aimani NomCha	and & Proc	Poorkoo						
4. Design of Ster	ol Structuros M. Baghupati	Ajmani, Nemčna MH Dub – Now De	iliu & di Us., r Mhi	NUOI KEE.						
5. Design of Stor	ol Structuros, S. M. A. Kozmis	R K lindal Pront	tico Hall Nov	u Dolhi						
7 Design of Stee	el Structures, S. M. A. Kazinio	AH Dub New Delb	i i i i i i i i i i i i i i i i i i i	v Denn.						
7. Design of Ster	General Construction in Ste	ol - Code of Practi								
9 IS: 802 - 1995	5 Use Of Structural Steel In (Overhead Transm	ission Line To	wors - (Ode Of	Practico				
Beaffirmed in				500013 - 0		riactice,				
10 IS: 6533 -	1- 1989 Code Of Practice for	or Design and Co	nstruction of	Steel C	himnevs	Part 1				
Mechanical A	spects Reaffirmed in 2010			JICCIC	mmeys	, rait 1.				
	11 IS: 6522 2 1020 Code Of Bractice for Design and Construction of Steel Chimney's Part 2:									
Structural Asr	nects				ys	, i ui t 2.				
12. IS: 805 - 19	68. Code of Practice for Use of	of Steel in Gravity	Water Tanks							
13. Web links t	o e-learning: notel									
14 Mah h										

14. Web based learning, Journal Papers, etc.

(Course No.	Course Title	Course	Credits	Cor	ntact Ho	ours			
			Туре		L	Р	G			
	CE609	Construction Planning and Management	DC	4	3	0	1			
	Unit 1Constr	uction organization								
	Overview of construction, development and organization of projects, Construction									
organization structure, Construction finance management, scope of financial										
	managemen	t, working capital managemen	nt, capital inve	stment dec	ision.					
	Unit 2 Const	truction materials manageme	nt							
	Economy in I	material management, invento	ory manageme	ent and con	itrol, pur	chase a	nd			
	store manag	ement, specialized buying and	l vendors man	agement.						
	Unit 3Constr	uction equipment manageme	ent							
	Equipment p	erformance characteristics, se	election, plann	ing and ma	tching o	f constr	uction			
	equipment, e	equipment management, cons	struction huma	an resource	es manag	gement;	;			
	introduction	to human resource managem	ent, labor legi	slation, ind	ustrial re	elations	,			
	women in co	instruction.								
	Unit 4 Cons	truction contract manageme	nt							
	Legal aspect	s of contract, contract proced	ures and docu	iment, imp	ortant co	ontract o	clauses,			
	quality cont	trol during construction; C	onstruction a	ccounting;	nature	and 1	ole of			
	accounting,	accounting process and book	of accounts,	accounting	conven	tions ar	nd final			
	account, inve	entory valuation and depreciati	on							
Те	xt Books and	Reference Materials								
1.	Antill, Jam	es M., Woodhead, Ronald	W. , "Critica	al path me	ethods i	n const	truction			
2	practice", Jo	hn Wiley, NY, USA.	1			1	.1 1 !!			
Ζ.	Peurifoy, Sc	hexnayder and Shapira, Col	nstruction plai	nning, equi	pments	and me	ethods",			
2	McGraw Hil	and H. Cube. "Construction.	monogomont	nd plannin	a" Toto	MaGra				
5.	New Delhi	and II. Guna, Construction.	management a	na pianin	ig, Tata	wicora	w 11111,			
4	Patil R S "	Civil engineering contracts an	d estimates (v	ol-1 and v	ol-2)" O	rient I d	noman			
-T .	limited New	Delhi India	a comatos (v		<i></i>		Jiigiiiail			
5.	P. K. Jov. "F	Hand book of construction mar	nagement". Ma	cmillan In	dia limit	ed, New	/ Delhi.			
	India.		<i>C</i> , <i>i</i>			,	,			

6. Mark Saunders, "Research methods for business students", Pearson Education limited.

Course No.	Course Title	Course	Credits	Contact Hours		irs
		Туре		L	Р	G
CE 642	Advanced Construction Materials	DE	4	3	0	1

Timber: Definition, Classification, Growth and Structure of timber, Characteristics, Defects, Seasoning, Preservation, Veneers, Plywood, Boards, IS Codes

Steel: Types, Composition and Properties of Structural Steel, Advantages and Disadvantages of Steel Structures, IS Codes

Gypsum: Occurrence, Physical Properties, Resources in India, Alabaster, Uses. Glass, Ceramic Tiles

Unit 2

Plastics: Definition, History, Classification, Polymerization, Properties of Plastics, Applications in Building Industry, IS Codes

Paints: Classification, Composition of Oil Paints, Characteristics of Good Paints, Defects in Painting, Enamel Paints, Distempers

Varnishes: Composition, Qualities of Good Varnish, Different Kinds of Varnish, French Polish or Spirit Polish, IS Code.

Unit 3

Fibre reinforced concrete: Fibres used in FRC, advantages and disadvantages of FRC over conventional reinforced concrete, factors effecting properties, relative fibre matrix stiffness, volume of fibres, aspect ratio of fibres, orientation of fibres, workability, size of coarse aggregate, mixing, application, Glass fibre reinforced cement: current developments in FRC, high fibre volume micro fibre system, slurry infiltrated fibre concrete, polymer concrete, behavior of FRC under Tension, compression and shear.

Unit 4

Ferrocement : Definition of ferrocement, applications of ferrocement, materials used in ferrocement, parameters and properties of materials used in ferrocement, cement mortar mix, skeletal steel, steel mesh reinforcement, fibre reinforced polymeric meshes, advantages of FRP, disadvantages of FRP, behavior of ferrocement in tension, advantages of ferrocement, difference between ferrocement and reinforced cement concrete: Physical and Mechanical properties, Concrete and other cementitious composite materials.

Text Books and Reference Materials

1. Santha Kumar, A.R., "Concrete Technology", Oxford, University Press.

- 2. Duggal, S.K., "Building Materials", New Age International Publishers.
- 3. Shetty, M.S., "Concrete Technology", SCC Ltd., New Delhi.
- 4. Neville, A.M., "Properties of Concrete", Longman, India.

Cou	irse No.	Course	Title	Course Type	Credits	Col	ntact Ho	urs
						L	Р	G
C	E 644	Tall Buil	dings	DE	4	3	0	1
Un	it 1 Structu	Iral Systems						
Ту	pes of struc	tural system	s; types c	of loads; method	s of analysis;	stability of	f tall stru	ctures;
sel	lection of fo	oundation fo	r tall build	dings				
Un	it 2 Wind E	ffects on Ta	II Structu	res				
BIU	lff body aer	odynamics;	aero-elas	tic phenomena;	wind directio	nality effe	cts; stru	ctural
res	sponse and	design consi uaka Effecte	on Tall S	s; standard provi	sions for win	a loading.		
Int	roduction t	o earthquak		ring and earthqu	uako rosistan	t design of	huilding	·c ·
ea	rthquake m	otion and re	snonse. a	eneral principle	s and design	criteria for	huilding	s, codal
pro	ovisions: as	eismic desigi	n of struc	tures: dvnamic a	nalvsis: effec	t of torsio	n: design	of stack
like	e structures	; earthquake	e forces ir	n tall buildings.	· /· · / · · · ·		, 0	
Un	nit 4 Shear	Walls		U				
Sh	ear in build	ings; need of	f shear wa	alls; location of s	hear walls in	buildings;	analysis	and
de	sign of shea	ar walls.						
Text B	Books and R	eference Ma	aterials					
1.	Wind Effe	cts on Struct	ures, Emi	l Simiu and R. H.	Scanlan, Joh	n Wiley & S	Sons, Inc	•
2.	Wind Forc	es in Engine	ering, Pet	er Sachs, Pergan	non Press, Ox	ford.		
3.	Elements	of Earthq	uake En	igineering, Jai	Krishna an	d A. R.	Chandı	asekaran,
	SaritaPrak	ashan, Meer	ut.					
4.	Advanced	Reinfirced C	oncrete D	Design, P.C. Verg	hese, PHI Lea	rning Pvt.	Ltd., Ne۱	v Delhi.
5.	Reinforce	d Concrete: l	imit State	e Design <i>,</i> A.K. Jai	n, Nem Chan	d & Bros.,	Roorkee	
6.	Analysis o	f Shear-wall	ed Buildi	ngs, S. M. A. Ka	zimi and R. (Chandra, T	or Steel	Research
	Foundatio	n in India, Ca	alcutta.					
7.	IS: 875- 1	L987 Part 1	Dead Lo	bad – Code of	Practice for	Design Lo	oads (Ot	her Than
	Earthquak	e) for Buildir	ngs and St	tructures, BIS.				
8.	IS: 875- 1	987 Part 2	Imposed	Load – Code of	f Practice for	r Design L	oads (O	ther Than
	Earthquak	e) for Buildir	ngs and St	tructures, BIS.				
9.	IS: 875- 1	L987 Part 3	Wind Lo	oad – Code of	Practice for	Design Lo	oads (Ot	her Than
	Earthquak	e) for Buildir	ngs and St	tructures, BIS.				
10.	IS: 1893- 1	1984 – Criter	ia for Ear	thquake Resistar	nt Design of S	tructures,	BIS.	
11.	IS: 1893 (F	Part 1) - 2002	2 – Criteri	a for Earthquake	Resistant De	sign of Str	uctures,	BIS.
12.	IS: 13920-	1993 – Code	e of Pract	ice for Ductile De	etailing of Rei	inforced Co	oncrete	Structures
	Subjected	to Seismic F	orces, BIS	5.				
13.	Structural	Analysis and	d Design	of Tall Buildings	, B.S. Tarana	th, McGra	w Hills.	
14.	Structural	Design of M	Iultistore	yed Buildings, U	J.H. Varyani,	South Asi	an Publi	shers Pvt.
1 7	Liu., New		т	C	LC	A		N-1-11-1
15.	London	Building F	rames, J.	S. Gero and H	. J. Cowan,	Applied S	cience F	udiisners,
	London.							

16.	16. Structural Design of Tall Concrete and Masonry Buildings, Eds. J. G. Mac Gregor and I.								
	Lyse, Council on Tall Buildings and Urban Habitat, ASCE.								
Course No.		Course Title	Course Type	Credits		ntact Ho	ours		
		Farthquake Resistant			L	r	G		
CE	701	Design of Structures	DC	4	3	0	1		
Un	Unit 1 Structural Systems								
Ту	Types of structural systems; types of loads; methods of analysis; stability of tall structures;								
sel	selection of foundation for tall buildings								
Un	Unit 2 Wind Effects on Tall Structures								
DIU	in Douy a shonse an	d design considerations: s	tandard provisio	ns for win	d loading	cis, stru	Llurai		
Un	it 3 Farth	a design considerations, s	ictures		u loauing.				
Int	roductior	to earthquake engineerin	ng and earthqual	ke resistan	t design of	- building	zs;		
ear	rthquake	motion and response; ger	neral principles a	nd design (criteria for	building	s; codal		
pro	ovisions; a	aseismic design of structur	es; dynamic ana	lysis; effec	t of torsio	n; design	of stack		
like	e structur	es; earthquake forces in ta	all buildings.						
Un	it 4 Shea	r Walls							
She	ear in bui	Idings; need of shear walls	s; location of she	ar walls in	buildings;	analysis	and		
de:	sign of sn	ear walls.							
1 1 TEXL D	1 Wind Efforts on Structures, Emil Simily and D. H. Scanlan, John Wilaw & Song, Inc.								
2	I. Wind Encos in Engineering, Dates Seeke, Descencer Dress, Ouferd								
2.	wind Forces in Engineering, Peter Sachs, Pergamon Press, Oxford.								
3.	Elements of Earthquake Engineering, Jai Krishna and A. R. Chandrasekaran, SaritaPrakashan, Meerut.								
4.	Advance	ed Reinfirced Concrete Des	sign, P.C. Verghe	se, PHI Lea	rning Pvt.	Ltd., Nev	w Delhi.		
5.	Reinforc	ed Concrete: Limit State D	Design, A.K. Jain,	Nem Chan	d & Bros.,	Roorkee			
6.	Analysis	of Shear-walled Building	s, S. M. A. Kazin	ni and R. (Chandra, T	or Steel	Research		
_	Foundat	ion in India, Calcutta.			.				
7.	IS: 875- Earthqua	1987 Part 1 Dead Load ake) for Buildings and Stru	d – Code of Pr ictures, BIS.	actice for	Design L	oads (Of	ther Than		
8.	8. IS: 875- 1987 Part 2 Imposed Load – Code of Practice for Design Loads (Other Than Earthquake) for Buildings and Structures BIS								
9.	IS: 875-	1987 Part 3 Wind Load	d – Code of Pr	actice for	Design L	oads (Ot	ther Than		
	Earthqua	ake) for Buildings and Stru	ctures, BIS.		U	•			
10.	IS: 1893-	- 1984 – Criteria for Eartho	guake Resistant [Design of S	tructures,	BIS.			
11.	IS: 1893	(Part 1) - 2002 – Criteria f	or Earthquake Re	esistant De	sign of Str	uctures,	BIS.		
12.	IS: 1392	0- 1993 – Code of Practice	for Ductile Deta	iling of Rei	inforced C	oncrete :	Structures		
	Subjecte	ed to Seismic Forces, BIS.							
13.	Structura	al Analysis and Design of	Tall Buildings, E	B.S. Tarana	th, McGra	w Hills.			
14.	Structura Ltd., Ne	al Design of Multistoreyed w Delhi.	d Buildings, U.H	. Varyani,	South Asi	ian Publi	ishers Pvt.		
15.	. Design of Building Frames, J. S. Gero and H. J. Cowan, Applied Science Publishers, London.								

16. Structural Design of Tall Concrete and Masonry Buildings, Eds. J. G. Mac Gregor and I. Lyse, Council on Tall Buildings and Urban Habitat, ASCE.

Course No.	Course Title	Course Type	Credits	Contact Hours		urs	
				L	Р	G	
CE 780S	General Seminar	DC	2	0	0	2	
CE 780SGeneral SeminarDC2002Topics related to general interest of Civil Engineering particularly new inventions and new techniques used in modern construction. For instance,Green House Buildings in India, Techniques to Curb Landslides, New Runway Pavement Materials, Design of Containment Shell of Nuclear Power Plant, New Construction Techniques involved in Tunneling, Rocket Launching Pad, Use of Tuned Mass Dampers in High-rise Construction, Construction of Bunkers and Silos							

Course No.	Course Title	Course Type	Credits	Contact Hours		ours		
				L	Р	G		
CE 791S	Lab/Project	DC	3	3	0	0		
1. To calculate the depth of the vertical crack in a beam with the help of Portable Ultra Sonic								
Non-destructive Testing Indicator (PUNDIT).								

2. To calculate the length of the inclined crack in a beam with the help of Portable Ultra Sonic Non-destructive Testing Indicator (PUNDIT).

- 3. To calculate the strength of the cube by testing under destruction and non-destructive testing by PUNDIT.
- 4. To calculate the Poison's ratio and modulus of elasticity of the concrete.
- 5. To study the behavior of timber section under pure bending.
- 6. To calculate stiffness, damping and logarithmic decrement of the spring system both in series and parallel.
- 7. Analyze a three span continuous beam (i) By moment redistribution method (ii) Analytically with the help of a software. Also compare the results.
 - 8. Analyse a multi- storey building considering earthquake and wind also.

Text Books and Reference Materials

1. Lab manual.

Web based learning

Course No.	Course Title	Course Type	Credits	Contact Hours		ours		
				L	P	G		
CE 781S	Preliminary Dissertation Seminar	DC	4	3	0	1		
Any suitable research topic relevant to structural engineering from the following thrust areas								
such as:								
Offshore Structures, Structural Dynamics, Computational Fluid Dynamics, Fibre Reinforced								
Concrete, Durability and Corrosion Resistance, Polymer Concrete Composites, Self								

Compacting Concrete, Permeable Concrete, Fire Resistance of High Strength Concrete, Performance Based Design, Reliability Based Design, Seismic Strengthening of Heritage Buildings, soil-structure interaction, recycled concrete, etc.To study the behavior of timber section under pure bending.

Course No.	Course Title	Course Type	Credits	Contact Hours		urs	
				L	Р	G	
CE 782S	Final Dissertation Seminar	DC	2	0	2	0	
Any suitable research topic relevant to structural engineering from the following thrust areas							

such as: Offshore Structures, Structural Dynamics, Computational Fluid Dynamics, Fibre Reinforced Concrete, Durability and Corrosion Resistance, Polymer Concrete Composites, Self Compacting Concrete, Permeable Concrete, Fire Resistance of High Strength Concrete, Performance Based Design, Reliability Based Design, Seismic Strengthening of Heritage Buildings, soil-structure interaction, recycled concrete, etc.

Course No.	Course Title	Course Type	Credits	Contact Hours		ours
				L	Р	G
CE 798S	Dissertation	DC	2	0	2	0

Any suitable research topic relevant to structural engineering from the following thrust areas such as:

Offshore Structures, Structural Dynamics, Computational Fluid Dynamics, Fibre Reinforced Concrete, Durability and Corrosion Resistance, Polymer Concrete Composites, Self Compacting Concrete, Permeable Concrete, Fire Resistance of High Strength Concrete, Performance Based Design, Reliability Based Design, Seismic Strengthening of Heritage Buildings, soil-structure interaction, recycled concrete, etc.